mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
63 lines
2.1 KiB
Python
63 lines
2.1 KiB
Python
import argparse
|
|
from gym.spaces import Dict, Tuple, Box, Discrete
|
|
import os
|
|
|
|
import ray
|
|
import ray.tune as tune
|
|
from ray.tune.registry import register_env
|
|
from ray.rllib.examples.env.nested_space_repeat_after_me_env import \
|
|
NestedSpaceRepeatAfterMeEnv
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--run", type=str, default="PPO")
|
|
parser.add_argument("--torch", action="store_true")
|
|
parser.add_argument("--as-test", action="store_true")
|
|
parser.add_argument("--stop-reward", type=float, default=0.0)
|
|
parser.add_argument("--stop-iters", type=int, default=100)
|
|
parser.add_argument("--stop-timesteps", type=int, default=100000)
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
ray.init(num_cpus=args.num_cpus or None)
|
|
register_env("NestedSpaceRepeatAfterMeEnv",
|
|
lambda c: NestedSpaceRepeatAfterMeEnv(c))
|
|
|
|
config = {
|
|
"env": "NestedSpaceRepeatAfterMeEnv",
|
|
"env_config": {
|
|
"space": Dict({
|
|
"a": Tuple(
|
|
[Dict({
|
|
"d": Box(-10.0, 10.0, ()),
|
|
"e": Discrete(2)
|
|
})]),
|
|
"b": Box(-10.0, 10.0, (2, )),
|
|
"c": Discrete(4)
|
|
}),
|
|
},
|
|
"entropy_coeff": 0.00005, # We don't want high entropy in this Env.
|
|
"gamma": 0.0, # No history in Env (bandit problem).
|
|
"lr": 0.0005,
|
|
"num_envs_per_worker": 20,
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"num_sgd_iter": 4,
|
|
"num_workers": 0,
|
|
"vf_loss_coeff": 0.01,
|
|
"framework": "torch" if args.torch else "tf",
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"episode_reward_mean": args.stop_reward,
|
|
"timesteps_total": args.stop_timesteps,
|
|
}
|
|
|
|
results = tune.run(args.run, config=config, stop=stop, verbose=1)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
ray.shutdown()
|