mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
105 lines
3.5 KiB
Python
105 lines
3.5 KiB
Python
"""Simple example of setting up a multi-agent policy mapping.
|
|
|
|
Control the number of agents and policies via --num-agents and --num-policies.
|
|
|
|
This works with hundreds of agents and policies, but note that initializing
|
|
many TF policies will take some time.
|
|
|
|
Also, TF evals might slow down with large numbers of policies. To debug TF
|
|
execution, set the TF_TIMELINE_DIR environment variable.
|
|
"""
|
|
|
|
import argparse
|
|
import gym
|
|
import os
|
|
import random
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.examples.env.multi_agent import MultiAgentCartPole
|
|
from ray.rllib.examples.models.shared_weights_model import \
|
|
SharedWeightsModel1, SharedWeightsModel2, TF2SharedWeightsModel, \
|
|
TorchSharedWeightsModel
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--num-agents", type=int, default=4)
|
|
parser.add_argument("--num-policies", type=int, default=2)
|
|
parser.add_argument("--stop-iters", type=int, default=200)
|
|
parser.add_argument("--stop-reward", type=float, default=150)
|
|
parser.add_argument("--stop-timesteps", type=int, default=100000)
|
|
parser.add_argument("--simple", action="store_true")
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
parser.add_argument("--as-test", action="store_true")
|
|
parser.add_argument(
|
|
"--framework", choices=["tf2", "tf", "tfe", "torch"], default="tf")
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
|
|
ray.init(num_cpus=args.num_cpus or None)
|
|
|
|
# Register the models to use.
|
|
if args.framework == "torch":
|
|
mod1 = mod2 = TorchSharedWeightsModel
|
|
elif args.framework in ["tfe", "tf2"]:
|
|
mod1 = mod2 = TF2SharedWeightsModel
|
|
else:
|
|
mod1 = SharedWeightsModel1
|
|
mod2 = SharedWeightsModel2
|
|
ModelCatalog.register_custom_model("model1", mod1)
|
|
ModelCatalog.register_custom_model("model2", mod2)
|
|
|
|
# Get obs- and action Spaces.
|
|
single_env = gym.make("CartPole-v0")
|
|
obs_space = single_env.observation_space
|
|
act_space = single_env.action_space
|
|
|
|
# Each policy can have a different configuration (including custom model).
|
|
def gen_policy(i):
|
|
config = {
|
|
"model": {
|
|
"custom_model": ["model1", "model2"][i % 2],
|
|
},
|
|
"gamma": random.choice([0.95, 0.99]),
|
|
}
|
|
return (None, obs_space, act_space, config)
|
|
|
|
# Setup PPO with an ensemble of `num_policies` different policies.
|
|
policies = {
|
|
"policy_{}".format(i): gen_policy(i)
|
|
for i in range(args.num_policies)
|
|
}
|
|
policy_ids = list(policies.keys())
|
|
|
|
config = {
|
|
"env": MultiAgentCartPole,
|
|
"env_config": {
|
|
"num_agents": args.num_agents,
|
|
},
|
|
"simple_optimizer": args.simple,
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"num_sgd_iter": 10,
|
|
"multiagent": {
|
|
"policies": policies,
|
|
"policy_mapping_fn": (lambda agent_id: random.choice(policy_ids)),
|
|
},
|
|
"framework": args.framework,
|
|
}
|
|
stop = {
|
|
"episode_reward_mean": args.stop_reward,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"training_iteration": args.stop_iters,
|
|
}
|
|
|
|
results = tune.run("PPO", stop=stop, config=config, verbose=1)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
ray.shutdown()
|