ray/rllib/examples/multi_agent_cartpole.py

105 lines
3.5 KiB
Python

"""Simple example of setting up a multi-agent policy mapping.
Control the number of agents and policies via --num-agents and --num-policies.
This works with hundreds of agents and policies, but note that initializing
many TF policies will take some time.
Also, TF evals might slow down with large numbers of policies. To debug TF
execution, set the TF_TIMELINE_DIR environment variable.
"""
import argparse
import gym
import os
import random
import ray
from ray import tune
from ray.rllib.examples.env.multi_agent import MultiAgentCartPole
from ray.rllib.examples.models.shared_weights_model import \
SharedWeightsModel1, SharedWeightsModel2, TF2SharedWeightsModel, \
TorchSharedWeightsModel
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check_learning_achieved
tf1, tf, tfv = try_import_tf()
parser = argparse.ArgumentParser()
parser.add_argument("--num-agents", type=int, default=4)
parser.add_argument("--num-policies", type=int, default=2)
parser.add_argument("--stop-iters", type=int, default=200)
parser.add_argument("--stop-reward", type=float, default=150)
parser.add_argument("--stop-timesteps", type=int, default=100000)
parser.add_argument("--simple", action="store_true")
parser.add_argument("--num-cpus", type=int, default=0)
parser.add_argument("--as-test", action="store_true")
parser.add_argument(
"--framework", choices=["tf2", "tf", "tfe", "torch"], default="tf")
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None)
# Register the models to use.
if args.framework == "torch":
mod1 = mod2 = TorchSharedWeightsModel
elif args.framework in ["tfe", "tf2"]:
mod1 = mod2 = TF2SharedWeightsModel
else:
mod1 = SharedWeightsModel1
mod2 = SharedWeightsModel2
ModelCatalog.register_custom_model("model1", mod1)
ModelCatalog.register_custom_model("model2", mod2)
# Get obs- and action Spaces.
single_env = gym.make("CartPole-v0")
obs_space = single_env.observation_space
act_space = single_env.action_space
# Each policy can have a different configuration (including custom model).
def gen_policy(i):
config = {
"model": {
"custom_model": ["model1", "model2"][i % 2],
},
"gamma": random.choice([0.95, 0.99]),
}
return (None, obs_space, act_space, config)
# Setup PPO with an ensemble of `num_policies` different policies.
policies = {
"policy_{}".format(i): gen_policy(i)
for i in range(args.num_policies)
}
policy_ids = list(policies.keys())
config = {
"env": MultiAgentCartPole,
"env_config": {
"num_agents": args.num_agents,
},
"simple_optimizer": args.simple,
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"num_sgd_iter": 10,
"multiagent": {
"policies": policies,
"policy_mapping_fn": (lambda agent_id: random.choice(policy_ids)),
},
"framework": args.framework,
}
stop = {
"episode_reward_mean": args.stop_reward,
"timesteps_total": args.stop_timesteps,
"training_iteration": args.stop_iters,
}
results = tune.run("PPO", stop=stop, config=config, verbose=1)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()