ray/rllib/examples/custom_eval.py

188 lines
6.4 KiB
Python

"""Example of customizing evaluation with RLlib.
Pass --custom-eval to run with a custom evaluation function too.
Here we define a custom evaluation method that runs a specific sweep of env
parameters (SimpleCorridor corridor lengths).
------------------------------------------------------------------------
Sample output for `python custom_eval.py`
------------------------------------------------------------------------
INFO trainer.py:623 -- Evaluating current policy for 10 episodes.
INFO trainer.py:650 -- Running round 0 of parallel evaluation (2/10 episodes)
INFO trainer.py:650 -- Running round 1 of parallel evaluation (4/10 episodes)
INFO trainer.py:650 -- Running round 2 of parallel evaluation (6/10 episodes)
INFO trainer.py:650 -- Running round 3 of parallel evaluation (8/10 episodes)
INFO trainer.py:650 -- Running round 4 of parallel evaluation (10/10 episodes)
Result for PG_SimpleCorridor_2c6b27dc:
...
evaluation:
custom_metrics: {}
episode_len_mean: 15.864661654135338
episode_reward_max: 1.0
episode_reward_mean: 0.49624060150375937
episode_reward_min: 0.0
episodes_this_iter: 133
off_policy_estimator: {}
policy_reward_max: {}
policy_reward_mean: {}
policy_reward_min: {}
sampler_perf:
mean_env_wait_ms: 0.0362923321333299
mean_inference_ms: 0.6319202064080927
mean_processing_ms: 0.14143652169068222
------------------------------------------------------------------------
Sample output for `python custom_eval.py --custom-eval`
------------------------------------------------------------------------
INFO trainer.py:631 -- Running custom eval function <function ...>
Update corridor length to 4
Update corridor length to 7
Custom evaluation round 1
Custom evaluation round 2
Custom evaluation round 3
Custom evaluation round 4
Result for PG_SimpleCorridor_0de4e686:
...
evaluation:
custom_metrics: {}
episode_len_mean: 9.15695067264574
episode_reward_max: 1.0
episode_reward_mean: 0.9596412556053812
episode_reward_min: 0.0
episodes_this_iter: 223
foo: 1
off_policy_estimator: {}
policy_reward_max: {}
policy_reward_mean: {}
policy_reward_min: {}
sampler_perf:
mean_env_wait_ms: 0.03423667269562796
mean_inference_ms: 0.5654563161491506
mean_processing_ms: 0.14494765630060774
"""
import argparse
import os
import ray
from ray import tune
from ray.rllib.evaluation.metrics import collect_episodes, summarize_episodes
from ray.rllib.examples.env.simple_corridor import SimpleCorridor
from ray.rllib.utils.test_utils import check_learning_achieved
parser = argparse.ArgumentParser()
parser.add_argument("--num-cpus", type=int, default=0)
parser.add_argument("--torch", action="store_true")
parser.add_argument("--as-test", action="store_true")
parser.add_argument("--stop-iters", type=int, default=50)
parser.add_argument("--stop-timesteps", type=int, default=20000)
parser.add_argument("--stop-reward", type=float, default=0.7)
parser.add_argument("--no-custom-eval", action="store_true")
def custom_eval_function(trainer, eval_workers):
"""Example of a custom evaluation function.
Args:
trainer (Trainer): trainer class to evaluate.
eval_workers (WorkerSet): evaluation workers.
Returns:
metrics (dict): evaluation metrics dict.
"""
# We configured 2 eval workers in the training config.
worker_1, worker_2 = eval_workers.remote_workers()
# Set different env settings for each worker. Here we use a fixed config,
# which also could have been computed in each worker by looking at
# env_config.worker_index (printed in SimpleCorridor class above).
worker_1.foreach_env.remote(lambda env: env.set_corridor_length(4))
worker_2.foreach_env.remote(lambda env: env.set_corridor_length(7))
for i in range(5):
print("Custom evaluation round", i)
# Calling .sample() runs exactly one episode per worker due to how the
# eval workers are configured.
ray.get([w.sample.remote() for w in eval_workers.remote_workers()])
# Collect the accumulated episodes on the workers, and then summarize the
# episode stats into a metrics dict.
episodes, _ = collect_episodes(
remote_workers=eval_workers.remote_workers(), timeout_seconds=99999)
# You can compute metrics from the episodes manually, or use the
# convenient `summarize_episodes()` utility:
metrics = summarize_episodes(episodes)
# Note that the above two statements are the equivalent of:
# metrics = collect_metrics(eval_workers.local_worker(),
# eval_workers.remote_workers())
# You can also put custom values in the metrics dict.
metrics["foo"] = 1
return metrics
if __name__ == "__main__":
args = parser.parse_args()
if args.no_custom_eval:
eval_fn = None
else:
eval_fn = custom_eval_function
ray.init(num_cpus=args.num_cpus or None)
config = {
"env": SimpleCorridor,
"env_config": {
"corridor_length": 10,
},
"horizon": 20,
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
# Training rollouts will be collected using just the learner
# process, but evaluation will be done in parallel with two
# workers. Hence, this run will use 3 CPUs total (1 for the
# learner + 2 more for evaluation workers).
"num_workers": 0,
"evaluation_num_workers": 2,
# Optional custom eval function.
"custom_eval_function": eval_fn,
# Enable evaluation, once per training iteration.
"evaluation_interval": 1,
# Run 10 episodes each time evaluation runs.
"evaluation_num_episodes": 10,
# Override the env config for evaluation.
"evaluation_config": {
"env_config": {
# Evaluate using LONGER corridor than trained on.
"corridor_length": 5,
},
},
"framework": "torch" if args.torch else "tf",
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
results = tune.run("PG", config=config, stop=stop, verbose=1)
# Check eval results (from eval workers using the custom function),
# not results from the regular workers.
if args.as_test:
check_learning_achieved(results, args.stop_reward, evaluation=True)
ray.shutdown()