mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
55 lines
1.6 KiB
Python
55 lines
1.6 KiB
Python
"""Example of using a custom image env and model.
|
|
|
|
Both the model and env are trivial (and super-fast), so they are useful
|
|
for running perf microbenchmarks.
|
|
"""
|
|
|
|
import argparse
|
|
|
|
import ray
|
|
import ray.tune as tune
|
|
from ray.tune import sample_from
|
|
from ray.rllib.examples.env.fast_image_env import FastImageEnv
|
|
from ray.rllib.examples.models.fast_model import FastModel, TorchFastModel
|
|
from ray.rllib.models import ModelCatalog
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--num-cpus", type=int, default=2)
|
|
parser.add_argument("--torch", action="store_true")
|
|
parser.add_argument("--stop-iters", type=int, default=200)
|
|
parser.add_argument("--stop-timesteps", type=int, default=100000)
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
ray.init(num_cpus=args.num_cpus or None)
|
|
|
|
ModelCatalog.register_custom_model(
|
|
"fast_model", TorchFastModel if args.torch else FastModel)
|
|
|
|
config = {
|
|
"env": FastImageEnv,
|
|
"compress_observations": True,
|
|
"model": {
|
|
"custom_model": "fast_model"
|
|
},
|
|
"num_gpus": 0,
|
|
"num_workers": 2,
|
|
"num_envs_per_worker": 10,
|
|
"num_data_loader_buffers": 1,
|
|
"num_aggregation_workers": 1,
|
|
"broadcast_interval": 50,
|
|
"rollout_fragment_length": 100,
|
|
"train_batch_size": sample_from(
|
|
lambda spec: 1000 * max(1, spec.config.num_gpus)),
|
|
"fake_sampler": True,
|
|
"framework": "torch" if args.torch else "tf",
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
}
|
|
|
|
tune.run("IMPALA", config=config, stop=stop)
|
|
|
|
ray.shutdown()
|