mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
57 lines
1.7 KiB
Python
57 lines
1.7 KiB
Python
import argparse
|
|
|
|
from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--run", type=str, default="PPO")
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
parser.add_argument("--torch", action="store_true")
|
|
parser.add_argument("--as-test", action="store_true")
|
|
parser.add_argument("--use-prev-action-reward", action="store_true")
|
|
parser.add_argument("--stop-iters", type=int, default=200)
|
|
parser.add_argument("--stop-timesteps", type=int, default=100000)
|
|
parser.add_argument("--stop-reward", type=float, default=150.0)
|
|
|
|
if __name__ == "__main__":
|
|
import ray
|
|
from ray import tune
|
|
|
|
args = parser.parse_args()
|
|
|
|
ray.init(num_cpus=args.num_cpus or None)
|
|
|
|
configs = {
|
|
"PPO": {
|
|
"num_sgd_iter": 5,
|
|
"vf_share_layers": True,
|
|
"vf_loss_coeff": 0.0001,
|
|
},
|
|
"IMPALA": {
|
|
"num_workers": 2,
|
|
"num_gpus": 0,
|
|
"vf_loss_coeff": 0.01,
|
|
},
|
|
}
|
|
|
|
config = dict(
|
|
configs[args.run], **{
|
|
"env": StatelessCartPole,
|
|
"model": {
|
|
"use_lstm": True,
|
|
"lstm_use_prev_action_reward": args.use_prev_action_reward,
|
|
},
|
|
"framework": "torch" if args.torch else "tf",
|
|
})
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
results = tune.run(args.run, config=config, stop=stop)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
ray.shutdown()
|