mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00

* re * wip * wip * a3c working * torch support * pg works * lint * rm v2 * consumer id * clean up pg * clean up more * fix python 2.7 * tf session management * docs * dqn wip * fix compile * dqn * apex runs * up * impotrs * ddpg * quotes * fix tests * fix last r * fix tests * lint * pass checkpoint restore * kwar * nits * policy graph * fix yapf * com * class * pyt * vectorization * update * test cpe * unit test * fix ddpg2 * changes * wip * args * faster test * common * fix * add alg option * batch mode and policy serving * multi serving test * todo * wip * serving test * doc async env * num envs * comments * thread * remove init hook * update * fix ppo * comments1 * fix * updates * add jenkins tests * fix * fix pytorch * fix * fixes * fix a3c policy * fix squeeze * fix trunc on apex * fix squeezing for real * update * remove horizon test for now * multiagent wip * update * fix race condition * fix ma * t * doc * st * wip * example * wip * working * cartpole * wip * batch wip * fix bug * make other_batches None default * working * debug * nit * warn * comments * fix ppo * fix obs filter * update * wip * tf * update * fix * cleanup * cleanup * spacing * model * fix * dqn * fix ddpg * doc * keep names * update * fix * com * docs * clarify model outputs * Update torch_policy_graph.py * fix obs filter * pass thru worker index * fix * rename * vlad torch comments * fix log action * debug name * fix lstm * remove unused ddpg net * remove conv net * revert lstm * wip * wip * cast * wip * works * fix a3c * works * lstm util test * doc * clean up * update * fix lstm check * move to end * fix sphinx * fix cmd * remove bad doc * envs * vec * doc prep * models * rl * alg * up * clarify * copy * async sa * fix * comments * fix a3c conf * tune lstm * fix reshape * fix * back to 16 * tuned a3c update * update * tuned * optional * merge * wip * fix up * move pg class * rename env * wip * update * tip * alg * readme * fix catalog * readme * doc * context * remove prep * comma * add env * link to paper * paper * update * rnn * update * wip * clean up ev creation * fix * fix * fix * fix lint * up * no comma * ma * Update run_multi_node_tests.sh * fix * sphinx is stupid * sphinx is stupid * clarify torch graph * no horizon * fix config * sb * Update test_optimizers.py
135 lines
4 KiB
ReStructuredText
135 lines
4 KiB
ReStructuredText
Ray
|
|
===
|
|
|
|
.. raw:: html
|
|
|
|
<embed>
|
|
<a href="https://github.com/ray-project/ray"><img style="position: absolute; top: 0; right: 0; border: 0;" src="https://camo.githubusercontent.com/365986a132ccd6a44c23a9169022c0b5c890c387/68747470733a2f2f73332e616d617a6f6e6177732e636f6d2f6769746875622f726962626f6e732f666f726b6d655f72696768745f7265645f6161303030302e706e67" alt="Fork me on GitHub" data-canonical-src="https://s3.amazonaws.com/github/ribbons/forkme_right_red_aa0000.png"></a>
|
|
</embed>
|
|
|
|
*Ray is a flexible, high-performance distributed execution framework.*
|
|
|
|
|
|
Ray is easy to install: ``pip install ray``
|
|
|
|
Example Use
|
|
-----------
|
|
|
|
+------------------------------------------------+----------------------------------------------------+
|
|
| **Basic Python** | **Distributed with Ray** |
|
|
+------------------------------------------------+----------------------------------------------------+
|
|
|.. code-block:: python |.. code-block:: python |
|
|
| | |
|
|
| # Execute f serially. | # Execute f in parallel. |
|
|
| | |
|
|
| | @ray.remote |
|
|
| def f(): | def f(): |
|
|
| time.sleep(1) | time.sleep(1) |
|
|
| return 1 | return 1 |
|
|
| | |
|
|
| | |
|
|
| | ray.init() |
|
|
| results = [f() for i in range(4)] | results = ray.get([f.remote() for i in range(4)]) |
|
|
+------------------------------------------------+----------------------------------------------------+
|
|
|
|
|
|
|
|
View the `codebase on GitHub`_.
|
|
|
|
.. _`codebase on GitHub`: https://github.com/ray-project/ray
|
|
|
|
Ray comes with libraries that accelerate deep learning and reinforcement learning development:
|
|
|
|
- `Ray Tune`_: Hyperparameter Optimization Framework
|
|
- `Ray RLlib`_: Scalable Reinforcement Learning
|
|
|
|
.. _`Ray Tune`: tune.html
|
|
.. _`Ray RLlib`: rllib.html
|
|
|
|
|
|
.. toctree::
|
|
:maxdepth: 1
|
|
:caption: Installation
|
|
|
|
installation.rst
|
|
install-on-docker.rst
|
|
installation-troubleshooting.rst
|
|
|
|
.. toctree::
|
|
:maxdepth: 1
|
|
:caption: Getting Started
|
|
|
|
tutorial.rst
|
|
api.rst
|
|
actors.rst
|
|
using-ray-with-gpus.rst
|
|
webui.rst
|
|
|
|
.. toctree::
|
|
:maxdepth: 1
|
|
:caption: Ray Tune
|
|
|
|
tune.rst
|
|
tune-config.rst
|
|
hyperband.rst
|
|
pbt.rst
|
|
|
|
.. toctree::
|
|
:maxdepth: 1
|
|
:caption: Ray RLlib
|
|
|
|
rllib.rst
|
|
rllib-training.rst
|
|
rllib-env.rst
|
|
rllib-algorithms.rst
|
|
rllib-models.rst
|
|
rllib-package-ref.rst
|
|
|
|
.. toctree::
|
|
:maxdepth: 1
|
|
:caption: Pandas on Ray
|
|
|
|
pandas_on_ray.rst
|
|
|
|
.. toctree::
|
|
:maxdepth: 1
|
|
:caption: Examples
|
|
|
|
example-rl-pong.rst
|
|
example-policy-gradient.rst
|
|
example-parameter-server.rst
|
|
example-resnet.rst
|
|
example-a3c.rst
|
|
example-lbfgs.rst
|
|
example-evolution-strategies.rst
|
|
example-cython.rst
|
|
example-streaming.rst
|
|
using-ray-with-tensorflow.rst
|
|
|
|
.. toctree::
|
|
:maxdepth: 1
|
|
:caption: Design
|
|
|
|
internals-overview.rst
|
|
serialization.rst
|
|
fault-tolerance.rst
|
|
plasma-object-store.rst
|
|
resources.rst
|
|
|
|
.. toctree::
|
|
:maxdepth: 1
|
|
:caption: Cluster Usage
|
|
|
|
autoscaling.rst
|
|
using-ray-on-a-cluster.rst
|
|
using-ray-on-a-large-cluster.rst
|
|
using-ray-and-docker-on-a-cluster.md
|
|
|
|
.. toctree::
|
|
:maxdepth: 1
|
|
:caption: Help
|
|
|
|
troubleshooting.rst
|
|
development.rst
|
|
profiling.rst
|
|
contact.rst
|