ray/doc/source/index.rst
Eric Liang 8aa56c12e6
[rllib] Document "v2" APIs (#2316)
* re

* wip

* wip

* a3c working

* torch support

* pg works

* lint

* rm v2

* consumer id

* clean up pg

* clean up more

* fix python 2.7

* tf session management

* docs

* dqn wip

* fix compile

* dqn

* apex runs

* up

* impotrs

* ddpg

* quotes

* fix tests

* fix last r

* fix tests

* lint

* pass checkpoint restore

* kwar

* nits

* policy graph

* fix yapf

* com

* class

* pyt

* vectorization

* update

* test cpe

* unit test

* fix ddpg2

* changes

* wip

* args

* faster test

* common

* fix

* add alg option

* batch mode and policy serving

* multi serving test

* todo

* wip

* serving test

* doc async env

* num envs

* comments

* thread

* remove init hook

* update

* fix ppo

* comments1

* fix

* updates

* add jenkins tests

* fix

* fix pytorch

* fix

* fixes

* fix a3c policy

* fix squeeze

* fix trunc on apex

* fix squeezing for real

* update

* remove horizon test for now

* multiagent wip

* update

* fix race condition

* fix ma

* t

* doc

* st

* wip

* example

* wip

* working

* cartpole

* wip

* batch wip

* fix bug

* make other_batches None default

* working

* debug

* nit

* warn

* comments

* fix ppo

* fix obs filter

* update

* wip

* tf

* update

* fix

* cleanup

* cleanup

* spacing

* model

* fix

* dqn

* fix ddpg

* doc

* keep names

* update

* fix

* com

* docs

* clarify model outputs

* Update torch_policy_graph.py

* fix obs filter

* pass thru worker index

* fix

* rename

* vlad torch comments

* fix log action

* debug name

* fix lstm

* remove unused ddpg net

* remove conv net

* revert lstm

* wip

* wip

* cast

* wip

* works

* fix a3c

* works

* lstm util test

* doc

* clean up

* update

* fix lstm check

* move to end

* fix sphinx

* fix cmd

* remove bad doc

* envs

* vec

* doc prep

* models

* rl

* alg

* up

* clarify

* copy

* async sa

* fix

* comments

* fix a3c conf

* tune lstm

* fix reshape

* fix

* back to 16

* tuned a3c update

* update

* tuned

* optional

* merge

* wip

* fix up

* move pg class

* rename env

* wip

* update

* tip

* alg

* readme

* fix catalog

* readme

* doc

* context

* remove prep

* comma

* add env

* link to paper

* paper

* update

* rnn

* update

* wip

* clean up ev creation

* fix

* fix

* fix

* fix lint

* up

* no comma

* ma

* Update run_multi_node_tests.sh

* fix

* sphinx is stupid

* sphinx is stupid

* clarify torch graph

* no horizon

* fix config

* sb

* Update test_optimizers.py
2018-07-01 00:05:08 -07:00

135 lines
4 KiB
ReStructuredText

Ray
===
.. raw:: html
<embed>
<a href="https://github.com/ray-project/ray"><img style="position: absolute; top: 0; right: 0; border: 0;" src="https://camo.githubusercontent.com/365986a132ccd6a44c23a9169022c0b5c890c387/68747470733a2f2f73332e616d617a6f6e6177732e636f6d2f6769746875622f726962626f6e732f666f726b6d655f72696768745f7265645f6161303030302e706e67" alt="Fork me on GitHub" data-canonical-src="https://s3.amazonaws.com/github/ribbons/forkme_right_red_aa0000.png"></a>
</embed>
*Ray is a flexible, high-performance distributed execution framework.*
Ray is easy to install: ``pip install ray``
Example Use
-----------
+------------------------------------------------+----------------------------------------------------+
| **Basic Python** | **Distributed with Ray** |
+------------------------------------------------+----------------------------------------------------+
|.. code-block:: python |.. code-block:: python |
| | |
| # Execute f serially. | # Execute f in parallel. |
| | |
| | @ray.remote |
| def f(): | def f(): |
| time.sleep(1) | time.sleep(1) |
| return 1 | return 1 |
| | |
| | |
| | ray.init() |
| results = [f() for i in range(4)] | results = ray.get([f.remote() for i in range(4)]) |
+------------------------------------------------+----------------------------------------------------+
View the `codebase on GitHub`_.
.. _`codebase on GitHub`: https://github.com/ray-project/ray
Ray comes with libraries that accelerate deep learning and reinforcement learning development:
- `Ray Tune`_: Hyperparameter Optimization Framework
- `Ray RLlib`_: Scalable Reinforcement Learning
.. _`Ray Tune`: tune.html
.. _`Ray RLlib`: rllib.html
.. toctree::
:maxdepth: 1
:caption: Installation
installation.rst
install-on-docker.rst
installation-troubleshooting.rst
.. toctree::
:maxdepth: 1
:caption: Getting Started
tutorial.rst
api.rst
actors.rst
using-ray-with-gpus.rst
webui.rst
.. toctree::
:maxdepth: 1
:caption: Ray Tune
tune.rst
tune-config.rst
hyperband.rst
pbt.rst
.. toctree::
:maxdepth: 1
:caption: Ray RLlib
rllib.rst
rllib-training.rst
rllib-env.rst
rllib-algorithms.rst
rllib-models.rst
rllib-package-ref.rst
.. toctree::
:maxdepth: 1
:caption: Pandas on Ray
pandas_on_ray.rst
.. toctree::
:maxdepth: 1
:caption: Examples
example-rl-pong.rst
example-policy-gradient.rst
example-parameter-server.rst
example-resnet.rst
example-a3c.rst
example-lbfgs.rst
example-evolution-strategies.rst
example-cython.rst
example-streaming.rst
using-ray-with-tensorflow.rst
.. toctree::
:maxdepth: 1
:caption: Design
internals-overview.rst
serialization.rst
fault-tolerance.rst
plasma-object-store.rst
resources.rst
.. toctree::
:maxdepth: 1
:caption: Cluster Usage
autoscaling.rst
using-ray-on-a-cluster.rst
using-ray-on-a-large-cluster.rst
using-ray-and-docker-on-a-cluster.md
.. toctree::
:maxdepth: 1
:caption: Help
troubleshooting.rst
development.rst
profiling.rst
contact.rst