ray/rllib/agents/ppo/test/test.py
Matthew A. Wright e3c9f7e83a Custom action distributions (#5164)
* custom action dist wip

* Test case for custom action dist

* ActionDistribution.get_parameter_shape_for_action_space pattern

* Edit exception message to also suggest using a custom action distribution

* Clean up ModelCatalog.get_action_dist

* Pass model config to ActionDistribution constructors

* Update custom action distribution test case

* Name fix

* Autoformatter

* parameter shape static methods for torch distributions

* Fix docstring

* Generalize fake array for graph initialization

* Fix action dist constructors

* Correct parameter shape static methods for multicategorical and gaussian

* Make suggested changes to custom action dist's

* Correct instances of not passing model config to action dist

* Autoformatter

* fix tuple distribution constructor

* bugfix
2019-08-06 11:13:16 -07:00

64 lines
2.3 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import numpy as np
from numpy.testing import assert_allclose
from ray.rllib.models.tf.tf_action_dist import Categorical
from ray.rllib.agents.ppo.utils import flatten, concatenate
from ray.rllib.utils import try_import_tf
tf = try_import_tf()
# TODO(ekl): move to rllib/models dir
class DistributionsTest(unittest.TestCase):
def testCategorical(self):
num_samples = 100000
logits = tf.placeholder(tf.float32, shape=(None, 10))
z = 8 * (np.random.rand(10) - 0.5)
data = np.tile(z, (num_samples, 1))
c = Categorical(logits, {}) # dummy config dict
sample_op = c.sample()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
samples = sess.run(sample_op, feed_dict={logits: data})
counts = np.zeros(10)
for sample in samples:
counts[sample] += 1.0
probs = np.exp(z) / np.sum(np.exp(z))
self.assertTrue(np.sum(np.abs(probs - counts / num_samples)) <= 0.01)
class UtilsTest(unittest.TestCase):
def testFlatten(self):
d = {
"s": np.array([[[1, -1], [2, -2]], [[3, -3], [4, -4]]]),
"a": np.array([[[5], [-5]], [[6], [-6]]])
}
flat = flatten(d.copy(), start=0, stop=2)
assert_allclose(d["s"][0][0][:], flat["s"][0][:])
assert_allclose(d["s"][0][1][:], flat["s"][1][:])
assert_allclose(d["s"][1][0][:], flat["s"][2][:])
assert_allclose(d["s"][1][1][:], flat["s"][3][:])
assert_allclose(d["a"][0][0], flat["a"][0])
assert_allclose(d["a"][0][1], flat["a"][1])
assert_allclose(d["a"][1][0], flat["a"][2])
assert_allclose(d["a"][1][1], flat["a"][3])
def testConcatenate(self):
d1 = {"s": np.array([0, 1]), "a": np.array([2, 3])}
d2 = {"s": np.array([4, 5]), "a": np.array([6, 7])}
d = concatenate([d1, d2])
assert_allclose(d["s"], np.array([0, 1, 4, 5]))
assert_allclose(d["a"], np.array([2, 3, 6, 7]))
D = concatenate([d])
assert_allclose(D["s"], np.array([0, 1, 4, 5]))
assert_allclose(D["a"], np.array([2, 3, 6, 7]))
if __name__ == "__main__":
unittest.main(verbosity=2)