ray/rllib/env/vector_env.py
Sven Mika 428516056a
[RLlib] SAC Torch (incl. Atari learning) (#7984)
* Policy-classes cleanup and torch/tf unification.
- Make Policy abstract.
- Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch).
- Move some methods and vars to base Policy
  (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more.

* Fix `clip_action` import from Policy (should probably be moved into utils altogether).

* - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy).
- Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces).

* Add `config` to c'tor call to TFPolicy.

* Add missing `config` to c'tor call to TFPolicy in marvil_policy.py.

* Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract).

* Fix LINT errors in Policy classes.

* Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py.

* policy.py LINT errors.

* Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases).

* policy.py
- Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented).
- Fix docstring of `num_state_tensors`.

* Make QMIX torch Policy a child of TorchPolicy (instead of Policy).

* QMixPolicy add empty implementations of abstract Policy methods.

* Store Policy's config in self.config in base Policy c'tor.

* - Make only compute_actions in base Policy's an abstractmethod and provide pass
implementation to all other methods if not defined.
- Fix state_batches=None (most Policies don't have internal states).

* Cartpole tf learning.

* Cartpole tf AND torch learning (in ~ same ts).

* Cartpole tf AND torch learning (in ~ same ts). 2

* Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3

* Cartpole tf AND torch learning (in ~ same ts). 4

* Cartpole tf AND torch learning (in ~ same ts). 5

* Cartpole tf AND torch learning (in ~ same ts). 6

* Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning.

* WIP.

* WIP.

* SAC torch learning Pendulum.

* WIP.

* SAC torch and tf learning Pendulum and Cartpole after cleanup.

* WIP.

* LINT.

* LINT.

* SAC: Move policy.target_model to policy.device as well.

* Fixes and cleanup.

* Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default).

* Fixes and LINT.

* Fixes and LINT.

* Fix and LINT.

* WIP.

* Test fixes and LINT.

* Fixes and LINT.

Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00

122 lines
3.8 KiB
Python

import logging
import numpy as np
from ray.rllib.utils.annotations import override, PublicAPI
logger = logging.getLogger(__name__)
@PublicAPI
class VectorEnv:
"""An environment that supports batch evaluation.
Subclasses must define the following attributes:
Attributes:
action_space (gym.Space): Action space of individual envs.
observation_space (gym.Space): Observation space of individual envs.
num_envs (int): Number of envs in this vector env.
"""
@staticmethod
def wrap(make_env=None,
existing_envs=None,
num_envs=1,
action_space=None,
observation_space=None):
return _VectorizedGymEnv(make_env, existing_envs or [], num_envs,
action_space, observation_space)
@PublicAPI
def vector_reset(self):
"""Resets all environments.
Returns:
obs (list): Vector of observations from each environment.
"""
raise NotImplementedError
@PublicAPI
def reset_at(self, index):
"""Resets a single environment.
Returns:
obs (obj): Observations from the resetted environment.
"""
raise NotImplementedError
@PublicAPI
def vector_step(self, actions):
"""Vectorized step.
Arguments:
actions (list): Actions for each env.
Returns:
obs (list): New observations for each env.
rewards (list): Reward values for each env.
dones (list): Done values for each env.
infos (list): Info values for each env.
"""
raise NotImplementedError
@PublicAPI
def get_unwrapped(self):
"""Returns the underlying env instances."""
raise NotImplementedError
class _VectorizedGymEnv(VectorEnv):
"""Internal wrapper for gym envs to implement VectorEnv.
Arguments:
make_env (func|None): Factory that produces a new gym env. Must be
defined if the number of existing envs is less than num_envs.
existing_envs (list): List of existing gym envs.
num_envs (int): Desired num gym envs to keep total.
"""
def __init__(self,
make_env,
existing_envs,
num_envs,
action_space=None,
observation_space=None):
self.make_env = make_env
self.envs = existing_envs
self.num_envs = num_envs
while len(self.envs) < self.num_envs:
self.envs.append(self.make_env(len(self.envs)))
self.action_space = action_space or self.envs[0].action_space
self.observation_space = observation_space or \
self.envs[0].observation_space
@override(VectorEnv)
def vector_reset(self):
return [e.reset() for e in self.envs]
@override(VectorEnv)
def reset_at(self, index):
return self.envs[index].reset()
@override(VectorEnv)
def vector_step(self, actions):
obs_batch, rew_batch, done_batch, info_batch = [], [], [], []
for i in range(self.num_envs):
obs, r, done, info = self.envs[i].step(actions[i])
if not np.isscalar(r) or not np.isreal(r) or not np.isfinite(r):
raise ValueError(
"Reward should be finite scalar, got {} ({}). "
"Actions={}.".format(r, type(r), actions[i]))
if type(info) is not dict:
raise ValueError("Info should be a dict, got {} ({})".format(
info, type(info)))
obs_batch.append(obs)
rew_batch.append(r)
done_batch.append(done)
info_batch.append(info)
return obs_batch, rew_batch, done_batch, info_batch
@override(VectorEnv)
def get_unwrapped(self):
return self.envs