mirror of
https://github.com/vale981/ray
synced 2025-03-09 12:56:46 -04:00
52 lines
1.6 KiB
Python
52 lines
1.6 KiB
Python
# fmt: off
|
|
# __doc_import_begin__
|
|
from ray import serve
|
|
|
|
from io import BytesIO
|
|
from PIL import Image
|
|
|
|
import torch
|
|
from torchvision import transforms
|
|
from torchvision.models import resnet18
|
|
# __doc_import_end__
|
|
# fmt: on
|
|
|
|
|
|
# __doc_define_servable_begin__
|
|
@serve.deployment(route_prefix="/image_predict")
|
|
class ImageModel:
|
|
def __init__(self):
|
|
self.model = resnet18(pretrained=True).eval()
|
|
self.preprocessor = transforms.Compose(
|
|
[
|
|
transforms.Resize(224),
|
|
transforms.CenterCrop(224),
|
|
transforms.ToTensor(),
|
|
transforms.Lambda(lambda t: t[:3, ...]), # remove alpha channel
|
|
transforms.Normalize(
|
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
|
),
|
|
]
|
|
)
|
|
|
|
async def __call__(self, starlette_request):
|
|
image_payload_bytes = await starlette_request.body()
|
|
pil_image = Image.open(BytesIO(image_payload_bytes))
|
|
print("[1/3] Parsed image data: {}".format(pil_image))
|
|
|
|
pil_images = [pil_image] # Our current batch size is one
|
|
input_tensor = torch.cat(
|
|
[self.preprocessor(i).unsqueeze(0) for i in pil_images]
|
|
)
|
|
print("[2/3] Images transformed, tensor shape {}".format(input_tensor.shape))
|
|
|
|
with torch.no_grad():
|
|
output_tensor = self.model(input_tensor)
|
|
print("[3/3] Inference done!")
|
|
return {"class_index": int(torch.argmax(output_tensor[0]))}
|
|
# __doc_define_servable_end__
|
|
|
|
|
|
# __doc_deploy_begin__
|
|
app = ImageModel.bind()
|
|
# __doc_deploy_end__
|