mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
605 lines
28 KiB
Python
605 lines
28 KiB
Python
from collections import OrderedDict
|
|
import gym
|
|
import logging
|
|
import re
|
|
from typing import Callable, Dict, List, Optional, Tuple, Type
|
|
|
|
from ray.util.debug import log_once
|
|
from ray.rllib.models.tf.tf_action_dist import TFActionDistribution
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.tf_policy import TFPolicy
|
|
from ray.rllib.policy.view_requirement import ViewRequirement
|
|
from ray.rllib.models.catalog import ModelCatalog
|
|
from ray.rllib.utils.annotations import override, DeveloperAPI
|
|
from ray.rllib.utils.debug import summarize
|
|
from ray.rllib.utils.deprecation import deprecation_warning, DEPRECATED_VALUE
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.tf_ops import get_placeholder
|
|
from ray.rllib.utils.typing import ModelGradients, TensorType, \
|
|
TrainerConfigDict
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@DeveloperAPI
|
|
class DynamicTFPolicy(TFPolicy):
|
|
"""A TFPolicy that auto-defines placeholders dynamically at runtime.
|
|
|
|
Do not sub-class this class directly (neither should you sub-class
|
|
TFPolicy), but rather use rllib.policy.tf_policy_template.build_tf_policy
|
|
to generate your custom tf (graph-mode or eager) Policy classes.
|
|
|
|
Initialization of this class occurs in two phases.
|
|
* Phase 1: the model is created and model variables are initialized.
|
|
* Phase 2: a fake batch of data is created, sent to the trajectory
|
|
postprocessor, and then used to create placeholders for the loss
|
|
function. The loss and stats functions are initialized with these
|
|
placeholders.
|
|
|
|
Initialization defines the static graph.
|
|
|
|
Attributes:
|
|
observation_space (gym.Space): observation space of the policy.
|
|
action_space (gym.Space): action space of the policy.
|
|
config (dict): config of the policy
|
|
model (ModelV2): TF model instance
|
|
dist_class (type): TF action distribution class
|
|
"""
|
|
|
|
@DeveloperAPI
|
|
def __init__(
|
|
self,
|
|
obs_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
config: TrainerConfigDict,
|
|
loss_fn: Callable[[
|
|
Policy, ModelV2, Type[TFActionDistribution], SampleBatch
|
|
], TensorType],
|
|
*,
|
|
stats_fn: Optional[Callable[[Policy, SampleBatch], Dict[
|
|
str, TensorType]]] = None,
|
|
grad_stats_fn: Optional[Callable[[
|
|
Policy, SampleBatch, ModelGradients
|
|
], Dict[str, TensorType]]] = None,
|
|
before_loss_init: Optional[Callable[[
|
|
Policy, gym.spaces.Space, gym.spaces.Space, TrainerConfigDict
|
|
], None]] = None,
|
|
make_model: Optional[Callable[[
|
|
Policy, gym.spaces.Space, gym.spaces.Space, TrainerConfigDict
|
|
], ModelV2]] = None,
|
|
action_sampler_fn: Optional[Callable[[
|
|
TensorType, List[TensorType]
|
|
], Tuple[TensorType, TensorType]]] = None,
|
|
action_distribution_fn: Optional[Callable[[
|
|
Policy, ModelV2, TensorType, TensorType, TensorType
|
|
], Tuple[TensorType, type, List[TensorType]]]] = None,
|
|
existing_inputs: Optional[Dict[str, "tf1.placeholder"]] = None,
|
|
existing_model: Optional[ModelV2] = None,
|
|
get_batch_divisibility_req: Optional[Callable[[Policy],
|
|
int]] = None,
|
|
obs_include_prev_action_reward=DEPRECATED_VALUE):
|
|
"""Initialize a dynamic TF policy.
|
|
|
|
Args:
|
|
observation_space (gym.spaces.Space): Observation space of the
|
|
policy.
|
|
action_space (gym.spaces.Space): Action space of the policy.
|
|
config (TrainerConfigDict): Policy-specific configuration data.
|
|
loss_fn (Callable[[Policy, ModelV2, Type[TFActionDistribution],
|
|
SampleBatch], TensorType]): Function that returns a loss tensor
|
|
for the policy graph.
|
|
stats_fn (Optional[Callable[[Policy, SampleBatch],
|
|
Dict[str, TensorType]]]): Optional function that returns a dict
|
|
of TF fetches given the policy and batch input tensors.
|
|
grad_stats_fn (Optional[Callable[[Policy, SampleBatch,
|
|
ModelGradients], Dict[str, TensorType]]]):
|
|
Optional function that returns a dict of TF fetches given the
|
|
policy, sample batch, and loss gradient tensors.
|
|
before_loss_init (Optional[Callable[
|
|
[Policy, gym.spaces.Space, gym.spaces.Space,
|
|
TrainerConfigDict], None]]): Optional function to run prior to
|
|
loss init that takes the same arguments as __init__.
|
|
make_model (Optional[Callable[[Policy, gym.spaces.Space,
|
|
gym.spaces.Space, TrainerConfigDict], ModelV2]]): Optional
|
|
function that returns a ModelV2 object given
|
|
policy, obs_space, action_space, and policy config.
|
|
All policy variables should be created in this function. If not
|
|
specified, a default model will be created.
|
|
action_sampler_fn (Optional[Callable[[Policy, ModelV2, Dict[
|
|
str, TensorType], TensorType, TensorType], Tuple[TensorType,
|
|
TensorType]]]): A callable returning a sampled action and its
|
|
log-likelihood given Policy, ModelV2, input_dict, explore,
|
|
timestep, and is_training.
|
|
action_distribution_fn (Optional[Callable[[Policy, ModelV2,
|
|
Dict[str, TensorType], TensorType, TensorType],
|
|
Tuple[TensorType, type, List[TensorType]]]]): A callable
|
|
returning distribution inputs (parameters), a dist-class to
|
|
generate an action distribution object from, and
|
|
internal-state outputs (or an empty list if not applicable).
|
|
Note: No Exploration hooks have to be called from within
|
|
`action_distribution_fn`. It's should only perform a simple
|
|
forward pass through some model.
|
|
If None, pass inputs through `self.model()` to get distribution
|
|
inputs.
|
|
The callable takes as inputs: Policy, ModelV2, input_dict,
|
|
explore, timestep, is_training.
|
|
existing_inputs (Optional[Dict[str, tf1.placeholder]]): When
|
|
copying a policy, this specifies an existing dict of
|
|
placeholders to use instead of defining new ones.
|
|
existing_model (Optional[ModelV2]): When copying a policy, this
|
|
specifies an existing model to clone and share weights with.
|
|
get_batch_divisibility_req (Optional[Callable[[Policy], int]]):
|
|
Optional callable that returns the divisibility requirement for
|
|
sample batches. If None, will assume a value of 1.
|
|
"""
|
|
if obs_include_prev_action_reward != DEPRECATED_VALUE:
|
|
deprecation_warning(
|
|
old="obs_include_prev_action_reward", error=False)
|
|
self.observation_space = obs_space
|
|
self.action_space = action_space
|
|
self.config = config
|
|
self.framework = "tf"
|
|
self._loss_fn = loss_fn
|
|
self._stats_fn = stats_fn
|
|
self._grad_stats_fn = grad_stats_fn
|
|
self._seq_lens = None
|
|
|
|
dist_class = dist_inputs = None
|
|
if action_sampler_fn or action_distribution_fn:
|
|
if not make_model:
|
|
raise ValueError(
|
|
"`make_model` is required if `action_sampler_fn` OR "
|
|
"`action_distribution_fn` is given")
|
|
else:
|
|
dist_class, logit_dim = ModelCatalog.get_action_dist(
|
|
action_space, self.config["model"])
|
|
|
|
# Setup self.model.
|
|
if existing_model:
|
|
if isinstance(existing_model, list):
|
|
self.model = existing_model[0]
|
|
# TODO: (sven) hack, but works for `target_[q_]?model`.
|
|
for i in range(1, len(existing_model)):
|
|
setattr(self, existing_model[i][0], existing_model[i][1])
|
|
elif make_model:
|
|
self.model = make_model(self, obs_space, action_space, config)
|
|
else:
|
|
self.model = ModelCatalog.get_model_v2(
|
|
obs_space=obs_space,
|
|
action_space=action_space,
|
|
num_outputs=logit_dim,
|
|
model_config=self.config["model"],
|
|
framework="tf")
|
|
# Auto-update model's inference view requirements, if recurrent.
|
|
self._update_model_view_requirements_from_init_state()
|
|
|
|
if existing_inputs:
|
|
self._state_inputs = [
|
|
v for k, v in existing_inputs.items()
|
|
if k.startswith("state_in_")
|
|
]
|
|
# Placeholder for RNN time-chunk valid lengths.
|
|
if self._state_inputs:
|
|
self._seq_lens = existing_inputs["seq_lens"]
|
|
else:
|
|
self._state_inputs = [
|
|
get_placeholder(
|
|
space=vr.space,
|
|
time_axis=not isinstance(vr.shift, int),
|
|
) for k, vr in self.model.view_requirements.items()
|
|
if k.startswith("state_in_")
|
|
]
|
|
# Placeholder for RNN time-chunk valid lengths.
|
|
if self._state_inputs:
|
|
self._seq_lens = tf1.placeholder(
|
|
dtype=tf.int32, shape=[None], name="seq_lens")
|
|
|
|
# Use default settings.
|
|
# Add NEXT_OBS, STATE_IN_0.., and others.
|
|
self.view_requirements = self._get_default_view_requirements()
|
|
# Combine view_requirements for Model and Policy.
|
|
self.view_requirements.update(self.model.view_requirements)
|
|
# Disable env-info placeholder.
|
|
if SampleBatch.INFOS in self.view_requirements:
|
|
self.view_requirements[SampleBatch.INFOS].used_for_training = False
|
|
|
|
# Setup standard placeholders.
|
|
if existing_inputs is not None:
|
|
timestep = existing_inputs["timestep"]
|
|
explore = existing_inputs["is_exploring"]
|
|
self._input_dict, self._dummy_batch = \
|
|
self._get_input_dict_and_dummy_batch(
|
|
self.view_requirements, existing_inputs)
|
|
else:
|
|
action_ph = ModelCatalog.get_action_placeholder(action_space)
|
|
prev_action_ph = {}
|
|
if SampleBatch.PREV_ACTIONS not in self.view_requirements:
|
|
prev_action_ph = {
|
|
SampleBatch.PREV_ACTIONS: ModelCatalog.
|
|
get_action_placeholder(action_space, "prev_action")
|
|
}
|
|
self._input_dict, self._dummy_batch = \
|
|
self._get_input_dict_and_dummy_batch(
|
|
self.view_requirements,
|
|
dict({SampleBatch.ACTIONS: action_ph},
|
|
**prev_action_ph))
|
|
# Placeholder for (sampling steps) timestep (int).
|
|
timestep = tf1.placeholder_with_default(
|
|
tf.zeros((), dtype=tf.int64), (), name="timestep")
|
|
# Placeholder for `is_exploring` flag.
|
|
explore = tf1.placeholder_with_default(
|
|
True, (), name="is_exploring")
|
|
|
|
# Placeholder for `is_training` flag.
|
|
self._input_dict["is_training"] = self._get_is_training_placeholder()
|
|
|
|
# Create the Exploration object to use for this Policy.
|
|
self.exploration = self._create_exploration()
|
|
|
|
# Fully customized action generation (e.g., custom policy).
|
|
if action_sampler_fn:
|
|
sampled_action, sampled_action_logp = action_sampler_fn(
|
|
self,
|
|
self.model,
|
|
obs_batch=self._input_dict[SampleBatch.CUR_OBS],
|
|
state_batches=self._state_inputs,
|
|
seq_lens=self._seq_lens,
|
|
prev_action_batch=self._input_dict.get(
|
|
SampleBatch.PREV_ACTIONS),
|
|
prev_reward_batch=self._input_dict.get(
|
|
SampleBatch.PREV_REWARDS),
|
|
explore=explore,
|
|
is_training=self._input_dict["is_training"])
|
|
# Distribution generation is customized, e.g., DQN, DDPG.
|
|
else:
|
|
if action_distribution_fn:
|
|
|
|
# Try new action_distribution_fn signature, supporting
|
|
# state_batches and seq_lens.
|
|
in_dict = self._input_dict
|
|
try:
|
|
dist_inputs, dist_class, self._state_out = \
|
|
action_distribution_fn(
|
|
self,
|
|
self.model,
|
|
input_dict=in_dict,
|
|
state_batches=self._state_inputs,
|
|
seq_lens=self._seq_lens,
|
|
explore=explore,
|
|
timestep=timestep,
|
|
is_training=in_dict["is_training"])
|
|
# Trying the old way (to stay backward compatible).
|
|
# TODO: Remove in future.
|
|
except TypeError as e:
|
|
if "positional argument" in e.args[0] or \
|
|
"unexpected keyword argument" in e.args[0]:
|
|
dist_inputs, dist_class, self._state_out = \
|
|
action_distribution_fn(
|
|
self, self.model,
|
|
obs_batch=in_dict[SampleBatch.CUR_OBS],
|
|
state_batches=self._state_inputs,
|
|
seq_lens=self._seq_lens,
|
|
prev_action_batch=in_dict.get(
|
|
SampleBatch.PREV_ACTIONS),
|
|
prev_reward_batch=in_dict.get(
|
|
SampleBatch.PREV_REWARDS),
|
|
explore=explore,
|
|
is_training=in_dict["is_training"])
|
|
else:
|
|
raise e
|
|
|
|
# Default distribution generation behavior:
|
|
# Pass through model. E.g., PG, PPO.
|
|
else:
|
|
if isinstance(self.model, tf.keras.Model):
|
|
dist_inputs, self._state_out, self._extra_action_fetches =\
|
|
self.model(self._input_dict)
|
|
else:
|
|
dist_inputs, self._state_out = self.model(
|
|
self._input_dict, self._state_inputs, self._seq_lens)
|
|
|
|
action_dist = dist_class(dist_inputs, self.model)
|
|
|
|
# Using exploration to get final action (e.g. via sampling).
|
|
sampled_action, sampled_action_logp = \
|
|
self.exploration.get_exploration_action(
|
|
action_distribution=action_dist,
|
|
timestep=timestep,
|
|
explore=explore)
|
|
|
|
# Phase 1 init.
|
|
sess = tf1.get_default_session() or tf1.Session()
|
|
|
|
batch_divisibility_req = get_batch_divisibility_req(self) if \
|
|
callable(get_batch_divisibility_req) else \
|
|
(get_batch_divisibility_req or 1)
|
|
|
|
super().__init__(
|
|
observation_space=obs_space,
|
|
action_space=action_space,
|
|
config=config,
|
|
sess=sess,
|
|
obs_input=self._input_dict[SampleBatch.OBS],
|
|
action_input=self._input_dict[SampleBatch.ACTIONS],
|
|
sampled_action=sampled_action,
|
|
sampled_action_logp=sampled_action_logp,
|
|
dist_inputs=dist_inputs,
|
|
dist_class=dist_class,
|
|
loss=None, # dynamically initialized on run
|
|
loss_inputs=[],
|
|
model=self.model,
|
|
state_inputs=self._state_inputs,
|
|
state_outputs=self._state_out,
|
|
prev_action_input=self._input_dict.get(SampleBatch.PREV_ACTIONS),
|
|
prev_reward_input=self._input_dict.get(SampleBatch.PREV_REWARDS),
|
|
seq_lens=self._seq_lens,
|
|
max_seq_len=config["model"]["max_seq_len"],
|
|
batch_divisibility_req=batch_divisibility_req,
|
|
explore=explore,
|
|
timestep=timestep)
|
|
|
|
# Phase 2 init.
|
|
if before_loss_init is not None:
|
|
before_loss_init(self, obs_space, action_space, config)
|
|
|
|
# Loss initialization and model/postprocessing test calls.
|
|
if not existing_inputs:
|
|
self._initialize_loss_from_dummy_batch(
|
|
auto_remove_unneeded_view_reqs=True)
|
|
|
|
@override(TFPolicy)
|
|
@DeveloperAPI
|
|
def copy(self,
|
|
existing_inputs: List[Tuple[str, "tf1.placeholder"]]) -> TFPolicy:
|
|
"""Creates a copy of self using existing input placeholders."""
|
|
|
|
# Note that there might be RNN state inputs at the end of the list
|
|
if len(self._loss_input_dict) != len(existing_inputs):
|
|
raise ValueError("Tensor list mismatch", self._loss_input_dict,
|
|
self._state_inputs, existing_inputs)
|
|
for i, (k, v) in enumerate(self._loss_input_dict_no_rnn.items()):
|
|
if v.shape.as_list() != existing_inputs[i].shape.as_list():
|
|
raise ValueError("Tensor shape mismatch", i, k, v.shape,
|
|
existing_inputs[i].shape)
|
|
# By convention, the loss inputs are followed by state inputs and then
|
|
# the seq len tensor
|
|
rnn_inputs = []
|
|
for i in range(len(self._state_inputs)):
|
|
rnn_inputs.append(
|
|
("state_in_{}".format(i),
|
|
existing_inputs[len(self._loss_input_dict_no_rnn) + i]))
|
|
if rnn_inputs:
|
|
rnn_inputs.append(("seq_lens", existing_inputs[-1]))
|
|
input_dict = OrderedDict(
|
|
[("is_exploring", self._is_exploring), ("timestep",
|
|
self._timestep)] +
|
|
[(k, existing_inputs[i])
|
|
for i, k in enumerate(self._loss_input_dict_no_rnn.keys())] +
|
|
rnn_inputs)
|
|
instance = self.__class__(
|
|
self.observation_space,
|
|
self.action_space,
|
|
self.config,
|
|
existing_inputs=input_dict,
|
|
existing_model=[
|
|
self.model,
|
|
("target_q_model", getattr(self, "target_q_model", None)),
|
|
("target_model", getattr(self, "target_model", None)),
|
|
])
|
|
|
|
instance._loss_input_dict = input_dict
|
|
loss = instance._do_loss_init(SampleBatch(input_dict))
|
|
loss_inputs = [
|
|
(k, existing_inputs[i])
|
|
for i, k in enumerate(self._loss_input_dict_no_rnn.keys())
|
|
]
|
|
|
|
TFPolicy._initialize_loss(instance, loss, loss_inputs)
|
|
if instance._grad_stats_fn:
|
|
instance._stats_fetches.update(
|
|
instance._grad_stats_fn(instance, input_dict, instance._grads))
|
|
return instance
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def get_initial_state(self) -> List[TensorType]:
|
|
if self.model:
|
|
return self.model.get_initial_state()
|
|
else:
|
|
return []
|
|
|
|
def _get_input_dict_and_dummy_batch(self, view_requirements,
|
|
existing_inputs):
|
|
"""Creates input_dict and dummy_batch for loss initialization.
|
|
|
|
Used for managing the Policy's input placeholders and for loss
|
|
initialization.
|
|
Input_dict: Str -> tf.placeholders, dummy_batch: str -> np.arrays.
|
|
|
|
Args:
|
|
view_requirements (ViewReqs): The view requirements dict.
|
|
existing_inputs (Dict[str, tf.placeholder]): A dict of already
|
|
existing placeholders.
|
|
|
|
Returns:
|
|
Tuple[Dict[str, tf.placeholder], Dict[str, np.ndarray]]: The
|
|
input_dict/dummy_batch tuple.
|
|
"""
|
|
input_dict = {}
|
|
for view_col, view_req in view_requirements.items():
|
|
# Point state_in to the already existing self._state_inputs.
|
|
mo = re.match("state_in_(\d+)", view_col)
|
|
if mo is not None:
|
|
input_dict[view_col] = self._state_inputs[int(mo.group(1))]
|
|
# State-outs (no placeholders needed).
|
|
elif view_col.startswith("state_out_"):
|
|
continue
|
|
# Skip action dist inputs placeholder (do later).
|
|
elif view_col == SampleBatch.ACTION_DIST_INPUTS:
|
|
continue
|
|
elif view_col in existing_inputs:
|
|
input_dict[view_col] = existing_inputs[view_col]
|
|
# All others.
|
|
else:
|
|
time_axis = not isinstance(view_req.shift, int)
|
|
if view_req.used_for_training:
|
|
# Create a +time-axis placeholder if the shift is not an
|
|
# int (range or list of ints).
|
|
input_dict[view_col] = get_placeholder(
|
|
space=view_req.space,
|
|
name=view_col,
|
|
time_axis=time_axis)
|
|
dummy_batch = self._get_dummy_batch_from_view_requirements(
|
|
batch_size=32)
|
|
|
|
return SampleBatch(input_dict, seq_lens=self._seq_lens), dummy_batch
|
|
|
|
def _initialize_loss_from_dummy_batch(
|
|
self, auto_remove_unneeded_view_reqs: bool = True,
|
|
stats_fn=None) -> None:
|
|
|
|
# Create the optimizer/exploration optimizer here. Some initialization
|
|
# steps (e.g. exploration postprocessing) may need this.
|
|
self._optimizer = self.optimizer()
|
|
|
|
# Test calls depend on variable init, so initialize model first.
|
|
self._sess.run(tf1.global_variables_initializer())
|
|
|
|
logger.info("Testing `compute_actions` w/ dummy batch.")
|
|
actions, state_outs, extra_fetches = \
|
|
self.compute_actions_from_input_dict(
|
|
self._dummy_batch, explore=False, timestep=0)
|
|
for key, value in extra_fetches.items():
|
|
self._dummy_batch[key] = value
|
|
self._input_dict[key] = get_placeholder(value=value, name=key)
|
|
if key not in self.view_requirements:
|
|
logger.info("Adding extra-action-fetch `{}` to "
|
|
"view-reqs.".format(key))
|
|
self.view_requirements[key] = \
|
|
ViewRequirement(space=gym.spaces.Box(
|
|
-1.0, 1.0, shape=value.shape[1:],
|
|
dtype=value.dtype))
|
|
dummy_batch = self._dummy_batch
|
|
|
|
logger.info("Testing `postprocess_trajectory` w/ dummy batch.")
|
|
self.exploration.postprocess_trajectory(self, dummy_batch, self._sess)
|
|
_ = self.postprocess_trajectory(dummy_batch)
|
|
# Add new columns automatically to (loss) input_dict.
|
|
for key in dummy_batch.added_keys:
|
|
if key not in self._input_dict:
|
|
self._input_dict[key] = get_placeholder(
|
|
value=dummy_batch[key], name=key)
|
|
if key not in self.view_requirements:
|
|
self.view_requirements[key] = \
|
|
ViewRequirement(space=gym.spaces.Box(
|
|
-1.0, 1.0, shape=dummy_batch[key].shape[1:],
|
|
dtype=dummy_batch[key].dtype))
|
|
|
|
train_batch = SampleBatch(
|
|
dict(self._input_dict, **self._loss_input_dict))
|
|
|
|
if self._state_inputs:
|
|
train_batch["seq_lens"] = self._seq_lens
|
|
self._loss_input_dict.update({"seq_lens": train_batch["seq_lens"]})
|
|
|
|
self._loss_input_dict.update({k: v for k, v in train_batch.items()})
|
|
|
|
if log_once("loss_init"):
|
|
logger.debug(
|
|
"Initializing loss function with dummy input:\n\n{}\n".format(
|
|
summarize(train_batch)))
|
|
|
|
loss = self._do_loss_init(train_batch)
|
|
|
|
all_accessed_keys = \
|
|
train_batch.accessed_keys | dummy_batch.accessed_keys | \
|
|
dummy_batch.added_keys | set(
|
|
self.model.view_requirements.keys())
|
|
|
|
TFPolicy._initialize_loss(self, loss, [
|
|
(k, v) for k, v in train_batch.items() if k in all_accessed_keys
|
|
] + ([("seq_lens", train_batch["seq_lens"])]
|
|
if "seq_lens" in train_batch else []))
|
|
|
|
if "is_training" in self._loss_input_dict:
|
|
del self._loss_input_dict["is_training"]
|
|
|
|
# Call the grads stats fn.
|
|
# TODO: (sven) rename to simply stats_fn to match eager and torch.
|
|
if self._grad_stats_fn:
|
|
self._stats_fetches.update(
|
|
self._grad_stats_fn(self, train_batch, self._grads))
|
|
|
|
# Add new columns automatically to view-reqs.
|
|
if auto_remove_unneeded_view_reqs:
|
|
# Add those needed for postprocessing and training.
|
|
all_accessed_keys = train_batch.accessed_keys | \
|
|
dummy_batch.accessed_keys
|
|
# Tag those only needed for post-processing (with some exceptions).
|
|
for key in dummy_batch.accessed_keys:
|
|
if key not in train_batch.accessed_keys and \
|
|
key not in self.model.view_requirements and \
|
|
key not in [
|
|
SampleBatch.EPS_ID, SampleBatch.AGENT_INDEX,
|
|
SampleBatch.UNROLL_ID, SampleBatch.DONES,
|
|
SampleBatch.REWARDS, SampleBatch.INFOS]:
|
|
if key in self.view_requirements:
|
|
self.view_requirements[key].used_for_training = False
|
|
if key in self._loss_input_dict:
|
|
del self._loss_input_dict[key]
|
|
# Remove those not needed at all (leave those that are needed
|
|
# by Sampler to properly execute sample collection).
|
|
# Also always leave DONES, REWARDS, and INFOS, no matter what.
|
|
for key in list(self.view_requirements.keys()):
|
|
if key not in all_accessed_keys and key not in [
|
|
SampleBatch.EPS_ID, SampleBatch.AGENT_INDEX,
|
|
SampleBatch.UNROLL_ID, SampleBatch.DONES,
|
|
SampleBatch.REWARDS, SampleBatch.INFOS] and \
|
|
key not in self.model.view_requirements:
|
|
# If user deleted this key manually in postprocessing
|
|
# fn, warn about it and do not remove from
|
|
# view-requirements.
|
|
if key in dummy_batch.deleted_keys:
|
|
logger.warning(
|
|
"SampleBatch key '{}' was deleted manually in "
|
|
"postprocessing function! RLlib will "
|
|
"automatically remove non-used items from the "
|
|
"data stream. Remove the `del` from your "
|
|
"postprocessing function.".format(key))
|
|
else:
|
|
del self.view_requirements[key]
|
|
if key in self._loss_input_dict:
|
|
del self._loss_input_dict[key]
|
|
# Add those data_cols (again) that are missing and have
|
|
# dependencies by view_cols.
|
|
for key in list(self.view_requirements.keys()):
|
|
vr = self.view_requirements[key]
|
|
if (vr.data_col is not None
|
|
and vr.data_col not in self.view_requirements):
|
|
used_for_training = \
|
|
vr.data_col in train_batch.accessed_keys
|
|
self.view_requirements[vr.data_col] = ViewRequirement(
|
|
space=vr.space, used_for_training=used_for_training)
|
|
|
|
self._loss_input_dict_no_rnn = {
|
|
k: v
|
|
for k, v in self._loss_input_dict.items()
|
|
if (v not in self._state_inputs and v != self._seq_lens)
|
|
}
|
|
|
|
# Initialize again after loss init.
|
|
self._sess.run(tf1.global_variables_initializer())
|
|
|
|
def _do_loss_init(self, train_batch: SampleBatch):
|
|
loss = self._loss_fn(self, self.model, self.dist_class, train_batch)
|
|
if self._stats_fn:
|
|
self._stats_fetches.update(self._stats_fn(self, train_batch))
|
|
# Override the update ops to be those of the model.
|
|
self._update_ops = []
|
|
if not isinstance(self.model, tf.keras.Model):
|
|
self._update_ops = self.model.update_ops()
|
|
return loss
|