ray/rllib/examples/bare_metal_policy_with_custom_view_reqs.py

54 lines
1.6 KiB
Python

import argparse
import ray
from ray.rllib.agents.trainer_template import build_trainer
from ray.rllib.examples.policy.bare_metal_policy_with_custom_view_reqs \
import BareMetalPolicyWithCustomViewReqs
def get_cli_args():
"""Create CLI parser and return parsed arguments"""
parser = argparse.ArgumentParser()
# general args
parser.add_argument(
"--run", default="PPO", help="The RLlib-registered algorithm to use.")
parser.add_argument("--num-cpus", type=int, default=3)
parser.add_argument(
"--local-mode",
action="store_true",
help="Init Ray in local mode for easier debugging.")
args = parser.parse_args()
print(f"Running with following CLI args: {args}")
return args
if __name__ == "__main__":
args = get_cli_args()
ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode)
# Create q custom Trainer class using our custom Policy.
BareMetalPolicyTrainer = build_trainer(
name="MyPolicy", default_policy=BareMetalPolicyWithCustomViewReqs)
config = {
"env": "CartPole-v0",
"model": {
# Necessary to get the whole trajectory of 'state_in_0' in the
# sample batch.
"max_seq_len": 1,
},
"num_workers": 1,
# NOTE: Does this have consequences?
# I use it for not loading tensorflow/pytorch.
"framework": None,
"log_level": "DEBUG",
"create_env_on_driver": True,
}
# Train the Trainer with our policy.
my_trainer = BareMetalPolicyTrainer(config=config)
results = my_trainer.train()
print(results)