ray/rllib/optimizers/async_replay_optimizer.py

434 lines
17 KiB
Python

"""Implements Distributed Prioritized Experience Replay.
https://arxiv.org/abs/1803.00933"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import random
import time
import threading
import numpy as np
from six.moves import queue
import ray
from ray.rllib.evaluation.metrics import get_learner_stats
from ray.rllib.policy.sample_batch import SampleBatch, DEFAULT_POLICY_ID, \
MultiAgentBatch
from ray.rllib.optimizers.policy_optimizer import PolicyOptimizer
from ray.rllib.optimizers.replay_buffer import PrioritizedReplayBuffer
from ray.rllib.utils.annotations import override
from ray.rllib.utils.actors import TaskPool, create_colocated
from ray.rllib.utils.memory import ray_get_and_free
from ray.rllib.utils.timer import TimerStat
from ray.rllib.utils.window_stat import WindowStat
SAMPLE_QUEUE_DEPTH = 2
REPLAY_QUEUE_DEPTH = 4
LEARNER_QUEUE_MAX_SIZE = 16
class AsyncReplayOptimizer(PolicyOptimizer):
"""Main event loop of the Ape-X optimizer (async sampling with replay).
This class coordinates the data transfers between the learner thread,
remote workers (Ape-X actors), and replay buffer actors.
This has two modes of operation:
- normal replay: replays independent samples.
- batch replay: simplified mode where entire sample batches are
replayed. This supports RNNs, but not prioritization.
This optimizer requires that rollout workers return an additional
"td_error" array in the info return of compute_gradients(). This error
term will be used for sample prioritization."""
def __init__(self,
workers,
learning_starts=1000,
buffer_size=10000,
prioritized_replay=True,
prioritized_replay_alpha=0.6,
prioritized_replay_beta=0.4,
prioritized_replay_eps=1e-6,
train_batch_size=512,
sample_batch_size=50,
num_replay_buffer_shards=1,
max_weight_sync_delay=400,
debug=False,
batch_replay=False):
"""Initialize an async replay optimizer.
Arguments:
workers (WorkerSet): all workers
learning_starts (int): wait until this many steps have been sampled
before starting optimization.
buffer_size (int): max size of the replay buffer
prioritized_replay (bool): whether to enable prioritized replay
prioritized_replay_alpha (float): replay alpha hyperparameter
prioritized_replay_beta (float): replay beta hyperparameter
prioritized_replay_eps (float): replay eps hyperparameter
train_batch_size (int): size of batches to learn on
sample_batch_size (int): size of batches to sample from workers
num_replay_buffer_shards (int): number of actors to use to store
replay samples
max_weight_sync_delay (int): update the weights of a rollout worker
after collecting this number of timesteps from it
debug (bool): return extra debug stats
batch_replay (bool): replay entire sequential batches of
experiences instead of sampling steps individually
"""
PolicyOptimizer.__init__(self, workers)
self.debug = debug
self.batch_replay = batch_replay
self.replay_starts = learning_starts
self.prioritized_replay_beta = prioritized_replay_beta
self.prioritized_replay_eps = prioritized_replay_eps
self.max_weight_sync_delay = max_weight_sync_delay
self.learner = LearnerThread(self.workers.local_worker())
self.learner.start()
if self.batch_replay:
replay_cls = BatchReplayActor
else:
replay_cls = ReplayActor
self.replay_actors = create_colocated(replay_cls, [
num_replay_buffer_shards,
learning_starts,
buffer_size,
train_batch_size,
prioritized_replay_alpha,
prioritized_replay_beta,
prioritized_replay_eps,
], num_replay_buffer_shards)
# Stats
self.timers = {
k: TimerStat()
for k in [
"put_weights", "get_samples", "sample_processing",
"replay_processing", "update_priorities", "train", "sample"
]
}
self.num_weight_syncs = 0
self.num_samples_dropped = 0
self.learning_started = False
# Number of worker steps since the last weight update
self.steps_since_update = {}
# Otherwise kick of replay tasks for local gradient updates
self.replay_tasks = TaskPool()
for ra in self.replay_actors:
for _ in range(REPLAY_QUEUE_DEPTH):
self.replay_tasks.add(ra, ra.replay.remote())
# Kick off async background sampling
self.sample_tasks = TaskPool()
if self.workers.remote_workers():
self._set_workers(self.workers.remote_workers())
@override(PolicyOptimizer)
def step(self):
assert self.learner.is_alive()
assert len(self.workers.remote_workers()) > 0
start = time.time()
sample_timesteps, train_timesteps = self._step()
time_delta = time.time() - start
self.timers["sample"].push(time_delta)
self.timers["sample"].push_units_processed(sample_timesteps)
if train_timesteps > 0:
self.learning_started = True
if self.learning_started:
self.timers["train"].push(time_delta)
self.timers["train"].push_units_processed(train_timesteps)
self.num_steps_sampled += sample_timesteps
self.num_steps_trained += train_timesteps
@override(PolicyOptimizer)
def stop(self):
for r in self.replay_actors:
r.__ray_terminate__.remote()
self.learner.stopped = True
@override(PolicyOptimizer)
def reset(self, remote_workers):
self.workers.reset(remote_workers)
self.sample_tasks.reset_workers(remote_workers)
@override(PolicyOptimizer)
def stats(self):
replay_stats = ray_get_and_free(self.replay_actors[0].stats.remote(
self.debug))
timing = {
"{}_time_ms".format(k): round(1000 * self.timers[k].mean, 3)
for k in self.timers
}
timing["learner_grad_time_ms"] = round(
1000 * self.learner.grad_timer.mean, 3)
timing["learner_dequeue_time_ms"] = round(
1000 * self.learner.queue_timer.mean, 3)
stats = {
"sample_throughput": round(self.timers["sample"].mean_throughput,
3),
"train_throughput": round(self.timers["train"].mean_throughput, 3),
"num_weight_syncs": self.num_weight_syncs,
"num_samples_dropped": self.num_samples_dropped,
"learner_queue": self.learner.learner_queue_size.stats(),
"replay_shard_0": replay_stats,
}
debug_stats = {
"timing_breakdown": timing,
"pending_sample_tasks": self.sample_tasks.count,
"pending_replay_tasks": self.replay_tasks.count,
}
if self.debug:
stats.update(debug_stats)
if self.learner.stats:
stats["learner"] = self.learner.stats
return dict(PolicyOptimizer.stats(self), **stats)
# For https://github.com/ray-project/ray/issues/2541 only
def _set_workers(self, remote_workers):
self.workers.reset(remote_workers)
weights = self.workers.local_worker().get_weights()
for ev in self.workers.remote_workers():
ev.set_weights.remote(weights)
self.steps_since_update[ev] = 0
for _ in range(SAMPLE_QUEUE_DEPTH):
self.sample_tasks.add(ev, ev.sample_with_count.remote())
def _step(self):
sample_timesteps, train_timesteps = 0, 0
weights = None
with self.timers["sample_processing"]:
completed = list(self.sample_tasks.completed())
counts = ray_get_and_free([c[1][1] for c in completed])
for i, (ev, (sample_batch, count)) in enumerate(completed):
sample_timesteps += counts[i]
# Send the data to the replay buffer
random.choice(
self.replay_actors).add_batch.remote(sample_batch)
# Update weights if needed
self.steps_since_update[ev] += counts[i]
if self.steps_since_update[ev] >= self.max_weight_sync_delay:
# Note that it's important to pull new weights once
# updated to avoid excessive correlation between actors
if weights is None or self.learner.weights_updated:
self.learner.weights_updated = False
with self.timers["put_weights"]:
weights = ray.put(
self.workers.local_worker().get_weights())
ev.set_weights.remote(weights)
self.num_weight_syncs += 1
self.steps_since_update[ev] = 0
# Kick off another sample request
self.sample_tasks.add(ev, ev.sample_with_count.remote())
with self.timers["replay_processing"]:
for ra, replay in self.replay_tasks.completed():
self.replay_tasks.add(ra, ra.replay.remote())
if self.learner.inqueue.full():
self.num_samples_dropped += 1
else:
with self.timers["get_samples"]:
samples = ray_get_and_free(replay)
# Defensive copy against plasma crashes, see #2610 #3452
self.learner.inqueue.put((ra, samples and samples.copy()))
with self.timers["update_priorities"]:
while not self.learner.outqueue.empty():
ra, prio_dict, count = self.learner.outqueue.get()
ra.update_priorities.remote(prio_dict)
train_timesteps += count
return sample_timesteps, train_timesteps
@ray.remote(num_cpus=0)
class ReplayActor(object):
"""A replay buffer shard.
Ray actors are single-threaded, so for scalability multiple replay actors
may be created to increase parallelism."""
def __init__(self, num_shards, learning_starts, buffer_size,
train_batch_size, prioritized_replay_alpha,
prioritized_replay_beta, prioritized_replay_eps):
self.replay_starts = learning_starts // num_shards
self.buffer_size = buffer_size // num_shards
self.train_batch_size = train_batch_size
self.prioritized_replay_beta = prioritized_replay_beta
self.prioritized_replay_eps = prioritized_replay_eps
def new_buffer():
return PrioritizedReplayBuffer(
self.buffer_size, alpha=prioritized_replay_alpha)
self.replay_buffers = collections.defaultdict(new_buffer)
# Metrics
self.add_batch_timer = TimerStat()
self.replay_timer = TimerStat()
self.update_priorities_timer = TimerStat()
self.num_added = 0
def get_host(self):
return os.uname()[1]
def add_batch(self, batch):
# Handle everything as if multiagent
if isinstance(batch, SampleBatch):
batch = MultiAgentBatch({DEFAULT_POLICY_ID: batch}, batch.count)
with self.add_batch_timer:
for policy_id, s in batch.policy_batches.items():
for row in s.rows():
self.replay_buffers[policy_id].add(
row["obs"], row["actions"], row["rewards"],
row["new_obs"], row["dones"], row["weights"])
self.num_added += batch.count
def replay(self):
if self.num_added < self.replay_starts:
return None
with self.replay_timer:
samples = {}
for policy_id, replay_buffer in self.replay_buffers.items():
(obses_t, actions, rewards, obses_tp1, dones, weights,
batch_indexes) = replay_buffer.sample(
self.train_batch_size, beta=self.prioritized_replay_beta)
samples[policy_id] = SampleBatch({
"obs": obses_t,
"actions": actions,
"rewards": rewards,
"new_obs": obses_tp1,
"dones": dones,
"weights": weights,
"batch_indexes": batch_indexes
})
return MultiAgentBatch(samples, self.train_batch_size)
def update_priorities(self, prio_dict):
with self.update_priorities_timer:
for policy_id, (batch_indexes, td_errors) in prio_dict.items():
new_priorities = (
np.abs(td_errors) + self.prioritized_replay_eps)
self.replay_buffers[policy_id].update_priorities(
batch_indexes, new_priorities)
def stats(self, debug=False):
stat = {
"add_batch_time_ms": round(1000 * self.add_batch_timer.mean, 3),
"replay_time_ms": round(1000 * self.replay_timer.mean, 3),
"update_priorities_time_ms": round(
1000 * self.update_priorities_timer.mean, 3),
}
for policy_id, replay_buffer in self.replay_buffers.items():
stat.update({
"policy_{}".format(policy_id): replay_buffer.stats(debug=debug)
})
return stat
# note: we set num_cpus=0 to avoid failing to create replay actors when
# resources are fragmented. This isn't ideal.
@ray.remote(num_cpus=0)
class BatchReplayActor(object):
"""The batch replay version of the replay actor.
This allows for RNN models, but ignores prioritization params.
"""
def __init__(self, num_shards, learning_starts, buffer_size,
train_batch_size, prioritized_replay_alpha,
prioritized_replay_beta, prioritized_replay_eps):
self.replay_starts = learning_starts // num_shards
self.buffer_size = buffer_size // num_shards
self.train_batch_size = train_batch_size
self.buffer = []
# Metrics
self.num_added = 0
self.cur_size = 0
def get_host(self):
return os.uname()[1]
def add_batch(self, batch):
# Handle everything as if multiagent
if isinstance(batch, SampleBatch):
batch = MultiAgentBatch({DEFAULT_POLICY_ID: batch}, batch.count)
self.buffer.append(batch)
self.cur_size += batch.count
self.num_added += batch.count
while self.cur_size > self.buffer_size:
self.cur_size -= self.buffer.pop(0).count
def replay(self):
if self.num_added < self.replay_starts:
return None
return random.choice(self.buffer)
def update_priorities(self, prio_dict):
pass
def stats(self, debug=False):
stat = {
"cur_size": self.cur_size,
"num_added": self.num_added,
}
return stat
class LearnerThread(threading.Thread):
"""Background thread that updates the local model from replay data.
The learner thread communicates with the main thread through Queues. This
is needed since Ray operations can only be run on the main thread. In
addition, moving heavyweight gradient ops session runs off the main thread
improves overall throughput.
"""
def __init__(self, local_worker):
threading.Thread.__init__(self)
self.learner_queue_size = WindowStat("size", 50)
self.local_worker = local_worker
self.inqueue = queue.Queue(maxsize=LEARNER_QUEUE_MAX_SIZE)
self.outqueue = queue.Queue()
self.queue_timer = TimerStat()
self.grad_timer = TimerStat()
self.daemon = True
self.weights_updated = False
self.stopped = False
self.stats = {}
def run(self):
while not self.stopped:
self.step()
def step(self):
with self.queue_timer:
ra, replay = self.inqueue.get()
if replay is not None:
prio_dict = {}
with self.grad_timer:
grad_out = self.local_worker.learn_on_batch(replay)
for pid, info in grad_out.items():
prio_dict[pid] = (
replay.policy_batches[pid].data.get("batch_indexes"),
info.get("td_error"))
self.stats[pid] = get_learner_stats(info)
self.outqueue.put((ra, prio_dict, replay.count))
self.learner_queue_size.push(self.inqueue.qsize())
self.weights_updated = True