mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
56 lines
2.1 KiB
Python
56 lines
2.1 KiB
Python
from gym.spaces import Discrete, MultiDiscrete, Space
|
|
from typing import Union, Optional
|
|
|
|
from ray.rllib.utils.annotations import PublicAPI
|
|
from ray.rllib.models.action_dist import ActionDistribution
|
|
from ray.rllib.models.tf.tf_action_dist import Categorical
|
|
from ray.rllib.models.torch.torch_action_dist import TorchCategorical
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.exploration.stochastic_sampling import StochasticSampling
|
|
from ray.rllib.utils.framework import TensorType
|
|
|
|
|
|
@PublicAPI
|
|
class SoftQ(StochasticSampling):
|
|
"""Special case of StochasticSampling w/ Categorical and temperature param.
|
|
|
|
Returns a stochastic sample from a Categorical parameterized by the model
|
|
output divided by the temperature. Returns the argmax iff explore=False.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
action_space: Space,
|
|
*,
|
|
framework: Optional[str],
|
|
temperature: float = 1.0,
|
|
**kwargs
|
|
):
|
|
"""Initializes a SoftQ Exploration object.
|
|
|
|
Args:
|
|
action_space: The gym action space used by the environment.
|
|
temperature: The temperature to divide model outputs by
|
|
before creating the Categorical distribution to sample from.
|
|
framework: One of None, "tf", "torch".
|
|
"""
|
|
assert isinstance(action_space, (Discrete, MultiDiscrete))
|
|
super().__init__(action_space, framework=framework, **kwargs)
|
|
self.temperature = temperature
|
|
|
|
@override(StochasticSampling)
|
|
def get_exploration_action(
|
|
self,
|
|
action_distribution: ActionDistribution,
|
|
timestep: Union[int, TensorType],
|
|
explore: bool = True,
|
|
):
|
|
cls = type(action_distribution)
|
|
assert cls in [Categorical, TorchCategorical]
|
|
# Re-create the action distribution with the correct temperature
|
|
# applied.
|
|
dist = cls(action_distribution.inputs, self.model, temperature=self.temperature)
|
|
# Delegate to super method.
|
|
return super().get_exploration_action(
|
|
action_distribution=dist, timestep=timestep, explore=explore
|
|
)
|