ray/rllib/utils/debug/deterministic.py

56 lines
1.7 KiB
Python

import numpy as np
import os
import random
from typing import Optional
from ray.rllib.utils.annotations import DeveloperAPI
from ray.rllib.utils.framework import try_import_tf, try_import_torch
@DeveloperAPI
def update_global_seed_if_necessary(
framework: Optional[str] = None, seed: Optional[int] = None
) -> None:
"""Seed global modules such as random, numpy, torch, or tf.
This is useful for debugging and testing.
Args:
framework: The framework specifier (may be None).
seed: An optional int seed. If None, will not do
anything.
"""
if seed is None:
return
# Python random module.
random.seed(seed)
# Numpy.
np.random.seed(seed)
# Torch.
if framework == "torch":
torch, _ = try_import_torch()
torch.manual_seed(seed)
# See https://github.com/pytorch/pytorch/issues/47672.
cuda_version = torch.version.cuda
if cuda_version is not None and float(torch.version.cuda) >= 10.2:
os.environ["CUBLAS_WORKSPACE_CONFIG"] = "4096:8"
else:
from distutils.version import LooseVersion
if LooseVersion(torch.__version__) >= LooseVersion("1.8.0"):
# Not all Operations support this.
torch.use_deterministic_algorithms(True)
else:
torch.set_deterministic(True)
# This is only for Convolution no problem.
torch.backends.cudnn.deterministic = True
elif framework == "tf2" or framework == "tfe":
tf1, tf, _ = try_import_tf()
# Tf2.x.
if framework == "tf2":
tf.random.set_seed(seed)
# Tf-eager.
elif framework == "tfe":
tf1.set_random_seed(seed)