mirror of
https://github.com/vale981/ray
synced 2025-03-05 18:11:42 -05:00
90 lines
2.5 KiB
Python
90 lines
2.5 KiB
Python
from abc import ABC
|
|
|
|
import ray
|
|
|
|
import numpy as np
|
|
|
|
from ray.rllib import Policy
|
|
from ray.rllib.algorithms.algorithm import Algorithm
|
|
from ray.rllib.execution.rollout_ops import synchronous_parallel_sample
|
|
from ray.rllib.examples.env.parametric_actions_cartpole import ParametricActionsCartPole
|
|
from ray.rllib.models.modelv2 import restore_original_dimensions
|
|
from ray.rllib.utils import override
|
|
from ray.rllib.utils.typing import ResultDict
|
|
from ray.tune.registry import register_env
|
|
|
|
|
|
class RandomParametricPolicy(Policy, ABC):
|
|
"""
|
|
Just pick a random legal action
|
|
The outputted state of the environment needs to be a dictionary with an
|
|
'action_mask' key containing the legal actions for the agent.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.exploration = self._create_exploration()
|
|
|
|
@override(Policy)
|
|
def compute_actions(
|
|
self,
|
|
obs_batch,
|
|
state_batches=None,
|
|
prev_action_batch=None,
|
|
prev_reward_batch=None,
|
|
info_batch=None,
|
|
episodes=None,
|
|
**kwargs
|
|
):
|
|
|
|
obs_batch = restore_original_dimensions(
|
|
np.array(obs_batch, dtype=np.float32), self.observation_space, tensorlib=np
|
|
)
|
|
|
|
def pick_legal_action(legal_action):
|
|
return np.random.choice(
|
|
len(legal_action), 1, p=(legal_action / legal_action.sum())
|
|
)[0]
|
|
|
|
return [pick_legal_action(x) for x in obs_batch["action_mask"]], [], {}
|
|
|
|
def learn_on_batch(self, samples):
|
|
pass
|
|
|
|
def get_weights(self):
|
|
pass
|
|
|
|
def set_weights(self, weights):
|
|
pass
|
|
|
|
|
|
class RandomParametricAlgorithm(Algorithm):
|
|
"""Algo with Policy and config defined above and overriding `training_step`.
|
|
|
|
Overrides the `training_step` method, which only runs a (dummy)
|
|
rollout and performs no learning.
|
|
"""
|
|
|
|
def get_default_policy_class(self, config):
|
|
return RandomParametricPolicy
|
|
|
|
@override(Algorithm)
|
|
def training_step(self) -> ResultDict:
|
|
# Perform rollouts (only for collecting metrics later).
|
|
synchronous_parallel_sample(worker_set=self.workers)
|
|
|
|
# Return (empty) training metrics.
|
|
return {}
|
|
|
|
|
|
def main():
|
|
register_env("pa_cartpole", lambda _: ParametricActionsCartPole(10))
|
|
algo = RandomParametricAlgorithm(env="pa_cartpole")
|
|
result = algo.train()
|
|
assert result["episode_reward_mean"] > 10, result
|
|
print("Test: OK")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ray.init()
|
|
main()
|