ray/rllib/examples/deterministic_training.py
xwjiang2010 fcf897ee72
[air] update rllib example to use Tuner API. (#26987)
update rllib example to use Tuner API.

Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
2022-07-27 12:12:59 +01:00

73 lines
2.5 KiB
Python

"""
Example of a fully deterministic, repeatable RLlib train run using
the "seed" config key.
"""
import argparse
import ray
from ray import air, tune
from ray.rllib.examples.env.env_using_remote_actor import (
CartPoleWithRemoteParamServer,
ParameterStorage,
)
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
from ray.rllib.utils.metrics.learner_info import LEARNER_INFO
from ray.rllib.utils.test_utils import check
parser = argparse.ArgumentParser()
parser.add_argument("--run", type=str, default="PPO")
parser.add_argument("--framework", choices=["tf2", "tf", "tfe", "torch"], default="tf")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--as-test", action="store_true")
parser.add_argument("--stop-iters", type=int, default=2)
parser.add_argument("--num-gpus", type=float, default=0)
parser.add_argument("--num-gpus-per-worker", type=float, default=0)
if __name__ == "__main__":
args = parser.parse_args()
param_storage = ParameterStorage.options(name="param-server").remote()
config = {
"env": CartPoleWithRemoteParamServer,
"env_config": {
"param_server": "param-server",
},
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": args.num_gpus,
"num_workers": 1, # parallelism
"num_gpus_per_worker": args.num_gpus_per_worker,
"num_envs_per_worker": 2,
"framework": args.framework,
# Make sure every environment gets a fixed seed.
"seed": args.seed,
# Simplify to run this example script faster.
"train_batch_size": 100,
"sgd_minibatch_size": 10,
"num_sgd_iter": 5,
"rollout_fragment_length": 50,
}
stop = {
"training_iteration": args.stop_iters,
}
results1 = tune.Tuner(
args.run, param_space=config, run_config=air.RunConfig(stop=stop, verbose=1)
).fit()
results2 = tune.Tuner(
args.run, param_space=config, run_config=air.RunConfig(stop=stop, verbose=1)
).fit()
if args.as_test:
results1 = results1.get_best_result().metrics
results2 = results2.get_best_result().metrics
# Test rollout behavior.
check(results1["hist_stats"], results2["hist_stats"])
# As well as training behavior (minibatch sequence during SGD
# iterations).
check(
results1["info"][LEARNER_INFO][DEFAULT_POLICY_ID]["learner_stats"],
results2["info"][LEARNER_INFO][DEFAULT_POLICY_ID]["learner_stats"],
)
ray.shutdown()