ray/rllib/examples/custom_fast_model.py
xwjiang2010 fcf897ee72
[air] update rllib example to use Tuner API. (#26987)
update rllib example to use Tuner API.

Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
2022-07-27 12:12:59 +01:00

65 lines
1.9 KiB
Python

"""Example of using a custom image env and model.
Both the model and env are trivial (and super-fast), so they are useful
for running perf microbenchmarks.
"""
import argparse
import os
import ray
from ray import air, tune
from ray.tune import sample_from
from ray.rllib.examples.env.fast_image_env import FastImageEnv
from ray.rllib.examples.models.fast_model import FastModel, TorchFastModel
from ray.rllib.models import ModelCatalog
parser = argparse.ArgumentParser()
parser.add_argument("--num-cpus", type=int, default=4)
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.",
)
parser.add_argument("--stop-iters", type=int, default=200)
parser.add_argument("--stop-timesteps", type=int, default=100000)
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None)
ModelCatalog.register_custom_model(
"fast_model", TorchFastModel if args.framework == "torch" else FastModel
)
config = {
"env": FastImageEnv,
"compress_observations": True,
"model": {"custom_model": "fast_model"},
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"num_workers": 2,
"num_envs_per_worker": 10,
"num_multi_gpu_tower_stacks": 1,
"num_aggregation_workers": 1,
"broadcast_interval": 50,
"rollout_fragment_length": 100,
"train_batch_size": sample_from(
lambda spec: 1000 * max(1, spec.config.num_gpus or 1)
),
"fake_sampler": True,
"framework": args.framework,
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
}
tuner = tune.Tuner(
"IMPALA", param_space=config, run_config=air.RunConfig(stop=stop, verbose=1)
)
tuner.fit()
ray.shutdown()