mirror of
https://github.com/vale981/ray
synced 2025-03-05 10:01:43 -05:00
555 lines
20 KiB
Python
Executable file
555 lines
20 KiB
Python
Executable file
#!/usr/bin/env python
|
|
|
|
import argparse
|
|
import collections
|
|
import copy
|
|
import gym
|
|
import json
|
|
import os
|
|
from pathlib import Path
|
|
import shelve
|
|
|
|
import ray
|
|
import ray.cloudpickle as cloudpickle
|
|
from ray.rllib.algorithms.registry import get_algorithm_class
|
|
from ray.rllib.env import MultiAgentEnv
|
|
from ray.rllib.env.base_env import _DUMMY_AGENT_ID
|
|
from ray.rllib.env.env_context import EnvContext
|
|
from ray.rllib.evaluation.worker_set import WorkerSet
|
|
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
|
|
from ray.rllib.utils.deprecation import deprecation_warning
|
|
from ray.rllib.utils.spaces.space_utils import flatten_to_single_ndarray
|
|
from ray.tune.utils import merge_dicts
|
|
from ray.tune.registry import get_trainable_cls, _global_registry, ENV_CREATOR
|
|
|
|
EXAMPLE_USAGE = """
|
|
Example usage via RLlib CLI:
|
|
rllib evaluate /tmp/ray/checkpoint_dir/checkpoint-0 --run DQN
|
|
--env CartPole-v0 --steps 1000000 --out rollouts.pkl
|
|
|
|
Example usage via executable:
|
|
./evaluate.py /tmp/ray/checkpoint_dir/checkpoint-0 --run DQN
|
|
--env CartPole-v0 --steps 1000000 --out rollouts.pkl
|
|
|
|
Example usage w/o checkpoint (for testing purposes):
|
|
./evaluate.py --run PPO --env CartPole-v0 --episodes 500
|
|
"""
|
|
|
|
# Note: if you use any custom models or envs, register them here first, e.g.:
|
|
#
|
|
# from ray.rllib.examples.env.parametric_actions_cartpole import \
|
|
# ParametricActionsCartPole
|
|
# from ray.rllib.examples.model.parametric_actions_model import \
|
|
# ParametricActionsModel
|
|
# ModelCatalog.register_custom_model("pa_model", ParametricActionsModel)
|
|
# register_env("pa_cartpole", lambda _: ParametricActionsCartPole(10))
|
|
|
|
|
|
def create_parser(parser_creator=None):
|
|
parser_creator = parser_creator or argparse.ArgumentParser
|
|
parser = parser_creator(
|
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
description="Roll out a reinforcement learning agent given a checkpoint.",
|
|
epilog=EXAMPLE_USAGE,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"checkpoint",
|
|
type=str,
|
|
nargs="?",
|
|
help="(Optional) checkpoint from which to roll out. "
|
|
"If none given, will use an initial (untrained) Trainer.",
|
|
)
|
|
|
|
required_named = parser.add_argument_group("required named arguments")
|
|
required_named.add_argument(
|
|
"--run",
|
|
type=str,
|
|
required=True,
|
|
help="The algorithm or model to train. This may refer to the name "
|
|
"of a built-on algorithm (e.g. RLlib's `DQN` or `PPO`), or a "
|
|
"user-defined trainable function or class registered in the "
|
|
"tune registry.",
|
|
)
|
|
required_named.add_argument(
|
|
"--env",
|
|
type=str,
|
|
help="The environment specifier to use. This could be an openAI gym "
|
|
"specifier (e.g. `CartPole-v0`) or a full class-path (e.g. "
|
|
"`ray.rllib.examples.env.simple_corridor.SimpleCorridor`).",
|
|
)
|
|
parser.add_argument(
|
|
"--local-mode",
|
|
action="store_true",
|
|
help="Run ray in local mode for easier debugging.",
|
|
)
|
|
parser.add_argument(
|
|
"--render", action="store_true", help="Render the environment while evaluating."
|
|
)
|
|
# Deprecated: Use --render, instead.
|
|
parser.add_argument(
|
|
"--no-render",
|
|
default=False,
|
|
action="store_const",
|
|
const=True,
|
|
help="Deprecated! Rendering is off by default now. "
|
|
"Use `--render` to enable.",
|
|
)
|
|
parser.add_argument(
|
|
"--video-dir",
|
|
type=str,
|
|
default=None,
|
|
help="Specifies the directory into which videos of all episode "
|
|
"rollouts will be stored.",
|
|
)
|
|
parser.add_argument(
|
|
"--steps",
|
|
default=10000,
|
|
help="Number of timesteps to roll out. Rollout will also stop if "
|
|
"`--episodes` limit is reached first. A value of 0 means no "
|
|
"limitation on the number of timesteps run.",
|
|
)
|
|
parser.add_argument(
|
|
"--episodes",
|
|
default=0,
|
|
help="Number of complete episodes to roll out. Rollout will also stop "
|
|
"if `--steps` (timesteps) limit is reached first. A value of 0 means "
|
|
"no limitation on the number of episodes run.",
|
|
)
|
|
parser.add_argument("--out", default=None, help="Output filename.")
|
|
parser.add_argument(
|
|
"--config",
|
|
default="{}",
|
|
type=json.loads,
|
|
help="Algorithm-specific configuration (e.g. env, hyperparams). "
|
|
"Gets merged with loaded configuration from checkpoint file and "
|
|
"`evaluation_config` settings therein.",
|
|
)
|
|
parser.add_argument(
|
|
"--save-info",
|
|
default=False,
|
|
action="store_true",
|
|
help="Save the info field generated by the step() method, "
|
|
"as well as the action, observations, rewards and done fields.",
|
|
)
|
|
parser.add_argument(
|
|
"--use-shelve",
|
|
default=False,
|
|
action="store_true",
|
|
help="Save rollouts into a python shelf file (will save each episode "
|
|
"as it is generated). An output filename must be set using --out.",
|
|
)
|
|
parser.add_argument(
|
|
"--track-progress",
|
|
default=False,
|
|
action="store_true",
|
|
help="Write progress to a temporary file (updated "
|
|
"after each episode). An output filename must be set using --out; "
|
|
"the progress file will live in the same folder.",
|
|
)
|
|
return parser
|
|
|
|
|
|
class RolloutSaver:
|
|
"""Utility class for storing rollouts.
|
|
|
|
Currently supports two behaviours: the original, which
|
|
simply dumps everything to a pickle file once complete,
|
|
and a mode which stores each rollout as an entry in a Python
|
|
shelf db file. The latter mode is more robust to memory problems
|
|
or crashes part-way through the rollout generation. Each rollout
|
|
is stored with a key based on the episode number (0-indexed),
|
|
and the number of episodes is stored with the key "num_episodes",
|
|
so to load the shelf file, use something like:
|
|
|
|
with shelve.open('rollouts.pkl') as rollouts:
|
|
for episode_index in range(rollouts["num_episodes"]):
|
|
rollout = rollouts[str(episode_index)]
|
|
|
|
If outfile is None, this class does nothing.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
outfile=None,
|
|
use_shelve=False,
|
|
write_update_file=False,
|
|
target_steps=None,
|
|
target_episodes=None,
|
|
save_info=False,
|
|
):
|
|
self._outfile = outfile
|
|
self._update_file = None
|
|
self._use_shelve = use_shelve
|
|
self._write_update_file = write_update_file
|
|
self._shelf = None
|
|
self._num_episodes = 0
|
|
self._rollouts = []
|
|
self._current_rollout = []
|
|
self._total_steps = 0
|
|
self._target_episodes = target_episodes
|
|
self._target_steps = target_steps
|
|
self._save_info = save_info
|
|
|
|
def _get_tmp_progress_filename(self):
|
|
outpath = Path(self._outfile)
|
|
return outpath.parent / ("__progress_" + outpath.name)
|
|
|
|
@property
|
|
def outfile(self):
|
|
return self._outfile
|
|
|
|
def __enter__(self):
|
|
if self._outfile:
|
|
if self._use_shelve:
|
|
# Open a shelf file to store each rollout as they come in
|
|
self._shelf = shelve.open(self._outfile)
|
|
else:
|
|
# Original behaviour - keep all rollouts in memory and save
|
|
# them all at the end.
|
|
# But check we can actually write to the outfile before going
|
|
# through the effort of generating the rollouts:
|
|
try:
|
|
with open(self._outfile, "wb") as _:
|
|
pass
|
|
except IOError as x:
|
|
print(
|
|
"Can not open {} for writing - cancelling rollouts.".format(
|
|
self._outfile
|
|
)
|
|
)
|
|
raise x
|
|
if self._write_update_file:
|
|
# Open a file to track rollout progress:
|
|
self._update_file = self._get_tmp_progress_filename().open(mode="w")
|
|
return self
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
if self._shelf:
|
|
# Close the shelf file, and store the number of episodes for ease
|
|
self._shelf["num_episodes"] = self._num_episodes
|
|
self._shelf.close()
|
|
elif self._outfile and not self._use_shelve:
|
|
# Dump everything as one big pickle:
|
|
cloudpickle.dump(self._rollouts, open(self._outfile, "wb"))
|
|
if self._update_file:
|
|
# Remove the temp progress file:
|
|
self._get_tmp_progress_filename().unlink()
|
|
self._update_file = None
|
|
|
|
def _get_progress(self):
|
|
if self._target_episodes:
|
|
return "{} / {} episodes completed".format(
|
|
self._num_episodes, self._target_episodes
|
|
)
|
|
elif self._target_steps:
|
|
return "{} / {} steps completed".format(
|
|
self._total_steps, self._target_steps
|
|
)
|
|
else:
|
|
return "{} episodes completed".format(self._num_episodes)
|
|
|
|
def begin_rollout(self):
|
|
self._current_rollout = []
|
|
|
|
def end_rollout(self):
|
|
if self._outfile:
|
|
if self._use_shelve:
|
|
# Save this episode as a new entry in the shelf database,
|
|
# using the episode number as the key.
|
|
self._shelf[str(self._num_episodes)] = self._current_rollout
|
|
else:
|
|
# Append this rollout to our list, to save laer.
|
|
self._rollouts.append(self._current_rollout)
|
|
self._num_episodes += 1
|
|
if self._update_file:
|
|
self._update_file.seek(0)
|
|
self._update_file.write(self._get_progress() + "\n")
|
|
self._update_file.flush()
|
|
|
|
def append_step(self, obs, action, next_obs, reward, done, info):
|
|
"""Add a step to the current rollout, if we are saving them"""
|
|
if self._outfile:
|
|
if self._save_info:
|
|
self._current_rollout.append(
|
|
[obs, action, next_obs, reward, done, info]
|
|
)
|
|
else:
|
|
self._current_rollout.append([obs, action, next_obs, reward, done])
|
|
self._total_steps += 1
|
|
|
|
|
|
def run(args, parser):
|
|
# Load configuration from checkpoint file.
|
|
config_path = ""
|
|
if args.checkpoint:
|
|
config_dir = os.path.dirname(args.checkpoint)
|
|
config_path = os.path.join(config_dir, "params.pkl")
|
|
# Try parent directory.
|
|
if not os.path.exists(config_path):
|
|
config_path = os.path.join(config_dir, "../params.pkl")
|
|
|
|
# Load the config from pickled.
|
|
if os.path.exists(config_path):
|
|
with open(config_path, "rb") as f:
|
|
config = cloudpickle.load(f)
|
|
# If no pkl file found, require command line `--config`.
|
|
else:
|
|
# If no config in given checkpoint -> Error.
|
|
if args.checkpoint:
|
|
raise ValueError(
|
|
"Could not find params.pkl in either the checkpoint dir or "
|
|
"its parent directory AND no `--config` given on command "
|
|
"line!"
|
|
)
|
|
|
|
# Use default config for given agent.
|
|
_, config = get_algorithm_class(args.run, return_config=True)
|
|
|
|
# Make sure worker 0 has an Env.
|
|
config["create_env_on_driver"] = True
|
|
|
|
# Merge with `evaluation_config` (first try from command line, then from
|
|
# pkl file).
|
|
evaluation_config = copy.deepcopy(
|
|
args.config.get("evaluation_config", config.get("evaluation_config", {}))
|
|
)
|
|
config = merge_dicts(config, evaluation_config)
|
|
# Merge with command line `--config` settings (if not already the same
|
|
# anyways).
|
|
config = merge_dicts(config, args.config)
|
|
if not args.env:
|
|
if not config.get("env"):
|
|
parser.error("the following arguments are required: --env")
|
|
args.env = config.get("env")
|
|
|
|
# Make sure we have evaluation workers.
|
|
if not config.get("evaluation_num_workers"):
|
|
config["evaluation_num_workers"] = config.get("num_workers", 0)
|
|
if not config.get("evaluation_duration"):
|
|
config["evaluation_duration"] = 1
|
|
# Hard-override this as it raises a warning by Trainer otherwise.
|
|
# Makes no sense anyways, to have it set to None as we don't call
|
|
# `Trainer.train()` here.
|
|
config["evaluation_interval"] = 1
|
|
|
|
# Rendering and video recording settings.
|
|
if args.no_render:
|
|
deprecation_warning(old="--no-render", new="--render", error=False)
|
|
args.render = False
|
|
config["render_env"] = args.render
|
|
|
|
ray.init(local_mode=args.local_mode)
|
|
|
|
# Create the Trainer from config.
|
|
cls = get_trainable_cls(args.run)
|
|
agent = cls(env=args.env, config=config)
|
|
|
|
# Load state from checkpoint, if provided.
|
|
if args.checkpoint:
|
|
agent.restore(args.checkpoint)
|
|
|
|
num_steps = int(args.steps)
|
|
num_episodes = int(args.episodes)
|
|
|
|
# Do the actual rollout.
|
|
with RolloutSaver(
|
|
args.out,
|
|
args.use_shelve,
|
|
write_update_file=args.track_progress,
|
|
target_steps=num_steps,
|
|
target_episodes=num_episodes,
|
|
save_info=args.save_info,
|
|
) as saver:
|
|
rollout(agent, args.env, num_steps, num_episodes, saver, not args.render)
|
|
agent.stop()
|
|
|
|
|
|
class DefaultMapping(collections.defaultdict):
|
|
"""default_factory now takes as an argument the missing key."""
|
|
|
|
def __missing__(self, key):
|
|
self[key] = value = self.default_factory(key)
|
|
return value
|
|
|
|
|
|
def default_policy_agent_mapping(unused_agent_id):
|
|
return DEFAULT_POLICY_ID
|
|
|
|
|
|
def keep_going(steps, num_steps, episodes, num_episodes):
|
|
"""Determine whether we've collected enough data"""
|
|
# If num_episodes is set, stop if limit reached.
|
|
if num_episodes and episodes >= num_episodes:
|
|
return False
|
|
# If num_steps is set, stop if limit reached.
|
|
elif num_steps and steps >= num_steps:
|
|
return False
|
|
# Otherwise, keep going.
|
|
return True
|
|
|
|
|
|
def rollout(
|
|
agent,
|
|
env_name,
|
|
num_steps,
|
|
num_episodes=0,
|
|
saver=None,
|
|
no_render=True,
|
|
):
|
|
policy_agent_mapping = default_policy_agent_mapping
|
|
|
|
if saver is None:
|
|
saver = RolloutSaver()
|
|
|
|
# Normal case: Agent was setup correctly with an evaluation WorkerSet,
|
|
# which we will now use to rollout.
|
|
if hasattr(agent, "evaluation_workers") and isinstance(
|
|
agent.evaluation_workers, WorkerSet
|
|
):
|
|
steps = 0
|
|
episodes = 0
|
|
while keep_going(steps, num_steps, episodes, num_episodes):
|
|
saver.begin_rollout()
|
|
eval_result = agent.evaluate()["evaluation"]
|
|
# Increase timestep and episode counters.
|
|
eps = agent.config["evaluation_duration"]
|
|
episodes += eps
|
|
steps += eps * eval_result["episode_len_mean"]
|
|
# Print out results and continue.
|
|
print(
|
|
"Episode #{}: reward: {}".format(
|
|
episodes, eval_result["episode_reward_mean"]
|
|
)
|
|
)
|
|
saver.end_rollout()
|
|
return
|
|
|
|
# Agent has no evaluation workers, but RolloutWorkers.
|
|
elif hasattr(agent, "workers") and isinstance(agent.workers, WorkerSet):
|
|
env = agent.workers.local_worker().env
|
|
multiagent = isinstance(env, MultiAgentEnv)
|
|
if agent.workers.local_worker().multiagent:
|
|
policy_agent_mapping = agent.config["multiagent"]["policy_mapping_fn"]
|
|
policy_map = agent.workers.local_worker().policy_map
|
|
state_init = {p: m.get_initial_state() for p, m in policy_map.items()}
|
|
use_lstm = {p: len(s) > 0 for p, s in state_init.items()}
|
|
|
|
# Agent has neither evaluation- nor rollout workers.
|
|
else:
|
|
from gym import envs
|
|
|
|
if envs.registry.env_specs.get(agent.config["env"]):
|
|
# if environment is gym environment, load from gym
|
|
env = gym.make(agent.config["env"])
|
|
else:
|
|
# if environment registered ray environment, load from ray
|
|
env_creator = _global_registry.get(ENV_CREATOR, agent.config["env"])
|
|
env_context = EnvContext(agent.config["env_config"] or {}, worker_index=0)
|
|
env = env_creator(env_context)
|
|
multiagent = False
|
|
try:
|
|
policy_map = {DEFAULT_POLICY_ID: agent.policy}
|
|
except AttributeError:
|
|
raise AttributeError(
|
|
"Agent ({}) does not have a `policy` property! This is needed "
|
|
"for performing (trained) agent rollouts.".format(agent)
|
|
)
|
|
use_lstm = {DEFAULT_POLICY_ID: False}
|
|
|
|
action_init = {
|
|
p: flatten_to_single_ndarray(m.action_space.sample())
|
|
for p, m in policy_map.items()
|
|
}
|
|
|
|
steps = 0
|
|
episodes = 0
|
|
while keep_going(steps, num_steps, episodes, num_episodes):
|
|
mapping_cache = {} # in case policy_agent_mapping is stochastic
|
|
saver.begin_rollout()
|
|
obs = env.reset()
|
|
agent_states = DefaultMapping(
|
|
lambda agent_id: state_init[mapping_cache[agent_id]]
|
|
)
|
|
prev_actions = DefaultMapping(
|
|
lambda agent_id: action_init[mapping_cache[agent_id]]
|
|
)
|
|
prev_rewards = collections.defaultdict(lambda: 0.0)
|
|
done = False
|
|
reward_total = 0.0
|
|
while not done and keep_going(steps, num_steps, episodes, num_episodes):
|
|
multi_obs = obs if multiagent else {_DUMMY_AGENT_ID: obs}
|
|
action_dict = {}
|
|
for agent_id, a_obs in multi_obs.items():
|
|
if a_obs is not None:
|
|
policy_id = mapping_cache.setdefault(
|
|
agent_id, policy_agent_mapping(agent_id)
|
|
)
|
|
p_use_lstm = use_lstm[policy_id]
|
|
if p_use_lstm:
|
|
a_action, p_state, _ = agent.compute_single_action(
|
|
a_obs,
|
|
state=agent_states[agent_id],
|
|
prev_action=prev_actions[agent_id],
|
|
prev_reward=prev_rewards[agent_id],
|
|
policy_id=policy_id,
|
|
)
|
|
agent_states[agent_id] = p_state
|
|
else:
|
|
a_action = agent.compute_single_action(
|
|
a_obs,
|
|
prev_action=prev_actions[agent_id],
|
|
prev_reward=prev_rewards[agent_id],
|
|
policy_id=policy_id,
|
|
)
|
|
a_action = flatten_to_single_ndarray(a_action)
|
|
action_dict[agent_id] = a_action
|
|
prev_actions[agent_id] = a_action
|
|
action = action_dict
|
|
|
|
action = action if multiagent else action[_DUMMY_AGENT_ID]
|
|
next_obs, reward, done, info = env.step(action)
|
|
if multiagent:
|
|
for agent_id, r in reward.items():
|
|
prev_rewards[agent_id] = r
|
|
else:
|
|
prev_rewards[_DUMMY_AGENT_ID] = reward
|
|
|
|
if multiagent:
|
|
done = done["__all__"]
|
|
reward_total += sum(r for r in reward.values() if r is not None)
|
|
else:
|
|
reward_total += reward
|
|
if not no_render:
|
|
env.render()
|
|
saver.append_step(obs, action, next_obs, reward, done, info)
|
|
steps += 1
|
|
obs = next_obs
|
|
saver.end_rollout()
|
|
print("Episode #{}: reward: {}".format(episodes, reward_total))
|
|
if done:
|
|
episodes += 1
|
|
|
|
|
|
def main():
|
|
parser = create_parser()
|
|
args = parser.parse_args()
|
|
|
|
# --use_shelve w/o --out option.
|
|
if args.use_shelve and not args.out:
|
|
raise ValueError(
|
|
"If you set --use-shelve, you must provide an output file via "
|
|
"--out as well!"
|
|
)
|
|
# --track-progress w/o --out option.
|
|
if args.track_progress and not args.out:
|
|
raise ValueError(
|
|
"If you set --track-progress, you must provide an output file via "
|
|
"--out as well!"
|
|
)
|
|
|
|
run(args, parser)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|