mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
149 lines
5.4 KiB
Python
149 lines
5.4 KiB
Python
import numpy as np
|
|
import unittest
|
|
|
|
import ray
|
|
from ray.rllib.algorithms import dqn
|
|
from ray.rllib.algorithms.dqn.simple_q_tf_policy import build_q_losses as loss_tf
|
|
from ray.rllib.algorithms.dqn.simple_q_torch_policy import build_q_losses as loss_torch
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.numpy import fc, one_hot, huber_loss
|
|
from ray.rllib.utils.test_utils import (
|
|
check,
|
|
check_compute_single_action,
|
|
check_train_results,
|
|
framework_iterator,
|
|
)
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
|
|
class TestSimpleQ(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls) -> None:
|
|
ray.init()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls) -> None:
|
|
ray.shutdown()
|
|
|
|
def test_simple_q_compilation(self):
|
|
"""Test whether a SimpleQTrainer can be built on all frameworks."""
|
|
# Run locally and with compression
|
|
config = dqn.simple_q.SimpleQConfig().rollouts(
|
|
num_rollout_workers=0, compress_observations=True
|
|
)
|
|
|
|
num_iterations = 2
|
|
|
|
for _ in framework_iterator(config, with_eager_tracing=True):
|
|
trainer = config.build(env="CartPole-v0")
|
|
rw = trainer.workers.local_worker()
|
|
for i in range(num_iterations):
|
|
sb = rw.sample()
|
|
assert sb.count == config.rollout_fragment_length
|
|
results = trainer.train()
|
|
check_train_results(results)
|
|
print(results)
|
|
|
|
check_compute_single_action(trainer)
|
|
|
|
def test_simple_q_loss_function(self):
|
|
"""Tests the Simple-Q loss function results on all frameworks."""
|
|
config = dqn.simple_q.SimpleQConfig().rollouts(num_rollout_workers=0)
|
|
# Use very simple net (layer0=10 nodes, q-layer=2 nodes (2 actions)).
|
|
config.training(
|
|
model={
|
|
"fcnet_hiddens": [10],
|
|
"fcnet_activation": "linear",
|
|
}
|
|
)
|
|
|
|
for fw in framework_iterator(config):
|
|
# Generate Trainer and get its default Policy object.
|
|
trainer = dqn.SimpleQTrainer(config=config, env="CartPole-v0")
|
|
policy = trainer.get_policy()
|
|
# Batch of size=2.
|
|
input_ = SampleBatch(
|
|
{
|
|
SampleBatch.CUR_OBS: np.random.random(size=(2, 4)),
|
|
SampleBatch.ACTIONS: np.array([0, 1]),
|
|
SampleBatch.REWARDS: np.array([0.4, -1.23]),
|
|
SampleBatch.DONES: np.array([False, False]),
|
|
SampleBatch.NEXT_OBS: np.random.random(size=(2, 4)),
|
|
SampleBatch.EPS_ID: np.array([1234, 1234]),
|
|
SampleBatch.AGENT_INDEX: np.array([0, 0]),
|
|
SampleBatch.ACTION_LOGP: np.array([-0.1, -0.1]),
|
|
SampleBatch.ACTION_DIST_INPUTS: np.array(
|
|
[[0.1, 0.2], [-0.1, -0.2]]
|
|
),
|
|
SampleBatch.ACTION_PROB: np.array([0.1, 0.2]),
|
|
"q_values": np.array([[0.1, 0.2], [0.2, 0.1]]),
|
|
}
|
|
)
|
|
# Get model vars for computing expected model outs (q-vals).
|
|
# 0=layer-kernel; 1=layer-bias; 2=q-val-kernel; 3=q-val-bias
|
|
vars = policy.get_weights()
|
|
if isinstance(vars, dict):
|
|
vars = list(vars.values())
|
|
|
|
vars_t = policy.target_model.variables()
|
|
if fw == "tf":
|
|
vars_t = policy.get_session().run(vars_t)
|
|
|
|
# Q(s,a) outputs.
|
|
q_t = np.sum(
|
|
one_hot(input_[SampleBatch.ACTIONS], 2)
|
|
* fc(
|
|
fc(
|
|
input_[SampleBatch.CUR_OBS],
|
|
vars[0 if fw != "torch" else 2],
|
|
vars[1 if fw != "torch" else 3],
|
|
framework=fw,
|
|
),
|
|
vars[2 if fw != "torch" else 0],
|
|
vars[3 if fw != "torch" else 1],
|
|
framework=fw,
|
|
),
|
|
1,
|
|
)
|
|
# max[a'](Qtarget(s',a')) outputs.
|
|
q_target_tp1 = np.max(
|
|
fc(
|
|
fc(
|
|
input_[SampleBatch.NEXT_OBS],
|
|
vars_t[0 if fw != "torch" else 2],
|
|
vars_t[1 if fw != "torch" else 3],
|
|
framework=fw,
|
|
),
|
|
vars_t[2 if fw != "torch" else 0],
|
|
vars_t[3 if fw != "torch" else 1],
|
|
framework=fw,
|
|
),
|
|
1,
|
|
)
|
|
# TD-errors (Bellman equation).
|
|
td_error = q_t - config.gamma * input_[SampleBatch.REWARDS] + q_target_tp1
|
|
# Huber/Square loss on TD-error.
|
|
expected_loss = huber_loss(td_error).mean()
|
|
|
|
if fw == "torch":
|
|
input_ = policy._lazy_tensor_dict(input_)
|
|
# Get actual out and compare.
|
|
if fw == "tf":
|
|
out = policy.get_session().run(
|
|
policy._loss,
|
|
feed_dict=policy._get_loss_inputs_dict(input_, shuffle=False),
|
|
)
|
|
else:
|
|
out = (loss_torch if fw == "torch" else loss_tf)(
|
|
policy, policy.model, None, input_
|
|
)
|
|
check(out, expected_loss, decimals=1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
|
|
sys.exit(pytest.main(["-v", __file__]))
|