ray/rllib/algorithms/maml/maml_torch_policy.py

449 lines
16 KiB
Python

import logging
from typing import Dict, List, Type, Union
import ray
from ray.rllib.algorithms.ppo.ppo_tf_policy import validate_config
from ray.rllib.evaluation.postprocessing import (
Postprocessing,
compute_gae_for_sample_batch,
)
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.torch.torch_action_dist import TorchDistributionWrapper
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.torch_mixins import ValueNetworkMixin
from ray.rllib.policy.torch_policy_v2 import TorchPolicyV2
from ray.rllib.utils.annotations import override
from ray.rllib.utils.numpy import convert_to_numpy
from ray.rllib.utils.torch_utils import apply_grad_clipping
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.typing import TensorType
torch, nn = try_import_torch()
logger = logging.getLogger(__name__)
try:
import higher
except (ImportError, ModuleNotFoundError):
raise ImportError(
(
"The MAML and MB-MPO algorithms require the `higher` module to be "
"installed! However, there was no installation found. You can install it "
"via `pip install higher`."
)
)
def PPOLoss(
dist_class,
actions,
curr_logits,
behaviour_logits,
advantages,
value_fn,
value_targets,
vf_preds,
cur_kl_coeff,
entropy_coeff,
clip_param,
vf_clip_param,
vf_loss_coeff,
clip_loss=False,
):
def surrogate_loss(
actions, curr_dist, prev_dist, advantages, clip_param, clip_loss
):
pi_new_logp = curr_dist.logp(actions)
pi_old_logp = prev_dist.logp(actions)
logp_ratio = torch.exp(pi_new_logp - pi_old_logp)
if clip_loss:
return torch.min(
advantages * logp_ratio,
advantages * torch.clamp(logp_ratio, 1 - clip_param, 1 + clip_param),
)
return advantages * logp_ratio
def kl_loss(curr_dist, prev_dist):
return prev_dist.kl(curr_dist)
def entropy_loss(dist):
return dist.entropy()
def vf_loss(value_fn, value_targets, vf_preds, vf_clip_param=0.1):
# GAE Value Function Loss
vf_loss1 = torch.pow(value_fn - value_targets, 2.0)
vf_clipped = vf_preds + torch.clamp(
value_fn - vf_preds, -vf_clip_param, vf_clip_param
)
vf_loss2 = torch.pow(vf_clipped - value_targets, 2.0)
vf_loss = torch.max(vf_loss1, vf_loss2)
return vf_loss
pi_new_dist = dist_class(curr_logits, None)
pi_old_dist = dist_class(behaviour_logits, None)
surr_loss = torch.mean(
surrogate_loss(
actions, pi_new_dist, pi_old_dist, advantages, clip_param, clip_loss
)
)
kl_loss = torch.mean(kl_loss(pi_new_dist, pi_old_dist))
vf_loss = torch.mean(vf_loss(value_fn, value_targets, vf_preds, vf_clip_param))
entropy_loss = torch.mean(entropy_loss(pi_new_dist))
total_loss = -surr_loss + cur_kl_coeff * kl_loss
total_loss += vf_loss_coeff * vf_loss
total_loss -= entropy_coeff * entropy_loss
return total_loss, surr_loss, kl_loss, vf_loss, entropy_loss
# This is the computation graph for workers (inner adaptation steps)
class WorkerLoss(object):
def __init__(
self,
model,
dist_class,
actions,
curr_logits,
behaviour_logits,
advantages,
value_fn,
value_targets,
vf_preds,
cur_kl_coeff,
entropy_coeff,
clip_param,
vf_clip_param,
vf_loss_coeff,
clip_loss=False,
):
self.loss, surr_loss, kl_loss, vf_loss, ent_loss = PPOLoss(
dist_class=dist_class,
actions=actions,
curr_logits=curr_logits,
behaviour_logits=behaviour_logits,
advantages=advantages,
value_fn=value_fn,
value_targets=value_targets,
vf_preds=vf_preds,
cur_kl_coeff=cur_kl_coeff,
entropy_coeff=entropy_coeff,
clip_param=clip_param,
vf_clip_param=vf_clip_param,
vf_loss_coeff=vf_loss_coeff,
clip_loss=clip_loss,
)
# This is the Meta-Update computation graph for main (meta-update step)
class MAMLLoss(object):
def __init__(
self,
model,
config,
dist_class,
value_targets,
advantages,
actions,
behaviour_logits,
vf_preds,
cur_kl_coeff,
policy_vars,
obs,
num_tasks,
split,
meta_opt,
inner_adaptation_steps=1,
entropy_coeff=0,
clip_param=0.3,
vf_clip_param=0.1,
vf_loss_coeff=1.0,
use_gae=True,
):
self.config = config
self.num_tasks = num_tasks
self.inner_adaptation_steps = inner_adaptation_steps
self.clip_param = clip_param
self.dist_class = dist_class
self.cur_kl_coeff = cur_kl_coeff
self.model = model
self.vf_clip_param = vf_clip_param
self.vf_loss_coeff = vf_loss_coeff
self.entropy_coeff = entropy_coeff
# Split episode tensors into [inner_adaptation_steps+1, num_tasks, -1]
self.obs = self.split_placeholders(obs, split)
self.actions = self.split_placeholders(actions, split)
self.behaviour_logits = self.split_placeholders(behaviour_logits, split)
self.advantages = self.split_placeholders(advantages, split)
self.value_targets = self.split_placeholders(value_targets, split)
self.vf_preds = self.split_placeholders(vf_preds, split)
inner_opt = torch.optim.SGD(model.parameters(), lr=config["inner_lr"])
surr_losses = []
val_losses = []
kl_losses = []
entropy_losses = []
meta_losses = []
kls = []
meta_opt.zero_grad()
for i in range(self.num_tasks):
with higher.innerloop_ctx(model, inner_opt, copy_initial_weights=False) as (
fnet,
diffopt,
):
inner_kls = []
for step in range(self.inner_adaptation_steps):
ppo_loss, _, inner_kl_loss, _, _ = self.compute_losses(
fnet, step, i
)
diffopt.step(ppo_loss)
inner_kls.append(inner_kl_loss)
kls.append(inner_kl_loss.detach())
# Meta Update
ppo_loss, s_loss, kl_loss, v_loss, ent = self.compute_losses(
fnet, self.inner_adaptation_steps - 1, i, clip_loss=True
)
inner_loss = torch.mean(
torch.stack(
[
a * b
for a, b in zip(
self.cur_kl_coeff[
i
* self.inner_adaptation_steps : (i + 1)
* self.inner_adaptation_steps
],
inner_kls,
)
]
)
)
meta_loss = (ppo_loss + inner_loss) / self.num_tasks
meta_loss.backward()
surr_losses.append(s_loss.detach())
kl_losses.append(kl_loss.detach())
val_losses.append(v_loss.detach())
entropy_losses.append(ent.detach())
meta_losses.append(meta_loss.detach())
meta_opt.step()
# Stats Logging
self.mean_policy_loss = torch.mean(torch.stack(surr_losses))
self.mean_kl_loss = torch.mean(torch.stack(kl_losses))
self.mean_vf_loss = torch.mean(torch.stack(val_losses))
self.mean_entropy = torch.mean(torch.stack(entropy_losses))
self.mean_inner_kl = kls
self.loss = torch.sum(torch.stack(meta_losses))
# Hacky, needed to bypass RLlib backend
self.loss.requires_grad = True
def compute_losses(self, model, inner_adapt_iter, task_iter, clip_loss=False):
obs = self.obs[inner_adapt_iter][task_iter]
obs_dict = {"obs": obs, "obs_flat": obs}
curr_logits, _ = model.forward(obs_dict, None, None)
value_fns = model.value_function()
ppo_loss, surr_loss, kl_loss, val_loss, ent_loss = PPOLoss(
dist_class=self.dist_class,
actions=self.actions[inner_adapt_iter][task_iter],
curr_logits=curr_logits,
behaviour_logits=self.behaviour_logits[inner_adapt_iter][task_iter],
advantages=self.advantages[inner_adapt_iter][task_iter],
value_fn=value_fns,
value_targets=self.value_targets[inner_adapt_iter][task_iter],
vf_preds=self.vf_preds[inner_adapt_iter][task_iter],
cur_kl_coeff=0.0,
entropy_coeff=self.entropy_coeff,
clip_param=self.clip_param,
vf_clip_param=self.vf_clip_param,
vf_loss_coeff=self.vf_loss_coeff,
clip_loss=clip_loss,
)
return ppo_loss, surr_loss, kl_loss, val_loss, ent_loss
def split_placeholders(self, placeholder, split):
inner_placeholder_list = torch.split(
placeholder, torch.sum(split, dim=1).tolist(), dim=0
)
placeholder_list = []
for index, split_placeholder in enumerate(inner_placeholder_list):
placeholder_list.append(
torch.split(split_placeholder, split[index].tolist(), dim=0)
)
return placeholder_list
class KLCoeffMixin:
def __init__(self, config):
self.kl_coeff_val = (
[config["kl_coeff"]]
* config["inner_adaptation_steps"]
* config["num_workers"]
)
self.kl_target = self.config["kl_target"]
def update_kls(self, sampled_kls):
for i, kl in enumerate(sampled_kls):
if kl < self.kl_target / 1.5:
self.kl_coeff_val[i] *= 0.5
elif kl > 1.5 * self.kl_target:
self.kl_coeff_val[i] *= 2.0
return self.kl_coeff_val
class MAMLTorchPolicy(ValueNetworkMixin, KLCoeffMixin, TorchPolicyV2):
"""PyTorch policy class used with MAML."""
def __init__(self, observation_space, action_space, config):
config = dict(ray.rllib.algorithms.maml.maml.DEFAULT_CONFIG, **config)
validate_config(config)
TorchPolicyV2.__init__(
self,
observation_space,
action_space,
config,
max_seq_len=config["model"]["max_seq_len"],
)
KLCoeffMixin.__init__(self, config)
ValueNetworkMixin.__init__(self, config)
# TODO: Don't require users to call this manually.
self._initialize_loss_from_dummy_batch()
@override(TorchPolicyV2)
def loss(
self,
model: ModelV2,
dist_class: Type[TorchDistributionWrapper],
train_batch: SampleBatch,
) -> Union[TensorType, List[TensorType]]:
"""Constructs the loss function.
Args:
model: The Model to calculate the loss for.
dist_class: The action distr. class.
train_batch: The training data.
Returns:
The PPO loss tensor given the input batch.
"""
logits, state = model(train_batch)
self.cur_lr = self.config["lr"]
if self.config["worker_index"]:
self.loss_obj = WorkerLoss(
model=model,
dist_class=dist_class,
actions=train_batch[SampleBatch.ACTIONS],
curr_logits=logits,
behaviour_logits=train_batch[SampleBatch.ACTION_DIST_INPUTS],
advantages=train_batch[Postprocessing.ADVANTAGES],
value_fn=model.value_function(),
value_targets=train_batch[Postprocessing.VALUE_TARGETS],
vf_preds=train_batch[SampleBatch.VF_PREDS],
cur_kl_coeff=0.0,
entropy_coeff=self.config["entropy_coeff"],
clip_param=self.config["clip_param"],
vf_clip_param=self.config["vf_clip_param"],
vf_loss_coeff=self.config["vf_loss_coeff"],
clip_loss=False,
)
else:
self.var_list = model.named_parameters()
# `split` may not exist yet (during test-loss call), use a dummy value.
# Cannot use get here due to train_batch being a TrackingDict.
if "split" in train_batch:
split = train_batch["split"]
else:
split_shape = (
self.config["inner_adaptation_steps"],
self.config["num_workers"],
)
split_const = int(
train_batch["obs"].shape[0] // (split_shape[0] * split_shape[1])
)
split = torch.ones(split_shape, dtype=int) * split_const
self.loss_obj = MAMLLoss(
model=model,
dist_class=dist_class,
value_targets=train_batch[Postprocessing.VALUE_TARGETS],
advantages=train_batch[Postprocessing.ADVANTAGES],
actions=train_batch[SampleBatch.ACTIONS],
behaviour_logits=train_batch[SampleBatch.ACTION_DIST_INPUTS],
vf_preds=train_batch[SampleBatch.VF_PREDS],
cur_kl_coeff=self.kl_coeff_val,
policy_vars=self.var_list,
obs=train_batch[SampleBatch.CUR_OBS],
num_tasks=self.config["num_workers"],
split=split,
config=self.config,
inner_adaptation_steps=self.config["inner_adaptation_steps"],
entropy_coeff=self.config["entropy_coeff"],
clip_param=self.config["clip_param"],
vf_clip_param=self.config["vf_clip_param"],
vf_loss_coeff=self.config["vf_loss_coeff"],
use_gae=self.config["use_gae"],
meta_opt=self.meta_opt,
)
return self.loss_obj.loss
@override(TorchPolicyV2)
def optimizer(
self,
) -> Union[List["torch.optim.Optimizer"], "torch.optim.Optimizer"]:
"""
Workers use simple SGD for inner adaptation
Meta-Policy uses Adam optimizer for meta-update
"""
if not self.config["worker_index"]:
self.meta_opt = torch.optim.Adam(
self.model.parameters(), lr=self.config["lr"]
)
return self.meta_opt
return torch.optim.SGD(self.model.parameters(), lr=self.config["inner_lr"])
@override(TorchPolicyV2)
def stats_fn(self, train_batch: SampleBatch) -> Dict[str, TensorType]:
if self.config["worker_index"]:
return convert_to_numpy({"worker_loss": self.loss_obj.loss})
else:
return convert_to_numpy(
{
"cur_kl_coeff": self.kl_coeff_val,
"cur_lr": self.cur_lr,
"total_loss": self.loss_obj.loss,
"policy_loss": self.loss_obj.mean_policy_loss,
"vf_loss": self.loss_obj.mean_vf_loss,
"kl_loss": self.loss_obj.mean_kl_loss,
"inner_kl": self.loss_obj.mean_inner_kl,
"entropy": self.loss_obj.mean_entropy,
}
)
@override(TorchPolicyV2)
def extra_grad_process(
self, optimizer: "torch.optim.Optimizer", loss: TensorType
) -> Dict[str, TensorType]:
return apply_grad_clipping(self, optimizer, loss)
@override(TorchPolicyV2)
def postprocess_trajectory(
self, sample_batch, other_agent_batches=None, episode=None
):
# Do all post-processing always with no_grad().
# Not using this here will introduce a memory leak
# in torch (issue #6962).
# TODO: no_grad still necessary?
with torch.no_grad():
return compute_gae_for_sample_batch(
self, sample_batch, other_agent_batches, episode
)