ray/rllib/models/torch/recurrent_net.py

171 lines
6.6 KiB
Python

import numpy as np
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.torch.misc import SlimFC
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.policy.rnn_sequencing import add_time_dimension
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.annotations import override, DeveloperAPI
from ray.rllib.utils.framework import try_import_torch
torch, nn = try_import_torch()
@DeveloperAPI
class RecurrentNetwork(TorchModelV2):
"""Helper class to simplify implementing RNN models with TorchModelV2.
Instead of implementing forward(), you can implement forward_rnn() which
takes batches with the time dimension added already.
Here is an example implementation for a subclass
``MyRNNClass(RecurrentNetwork, nn.Module)``::
def __init__(self, obs_space, num_outputs):
nn.Module.__init__(self)
super().__init__(obs_space, action_space, num_outputs,
model_config, name)
self.obs_size = _get_size(obs_space)
self.rnn_hidden_dim = model_config["lstm_cell_size"]
self.fc1 = nn.Linear(self.obs_size, self.rnn_hidden_dim)
self.rnn = nn.GRUCell(self.rnn_hidden_dim, self.rnn_hidden_dim)
self.fc2 = nn.Linear(self.rnn_hidden_dim, num_outputs)
self.value_branch = nn.Linear(self.rnn_hidden_dim, 1)
self._cur_value = None
@override(ModelV2)
def get_initial_state(self):
# Place hidden states on same device as model.
h = [self.fc1.weight.new(
1, self.rnn_hidden_dim).zero_().squeeze(0)]
return h
@override(ModelV2)
def value_function(self):
assert self._cur_value is not None, "must call forward() first"
return self._cur_value
@override(RecurrentNetwork)
def forward_rnn(self, input_dict, state, seq_lens):
x = nn.functional.relu(self.fc1(input_dict["obs_flat"].float()))
h_in = state[0].reshape(-1, self.rnn_hidden_dim)
h = self.rnn(x, h_in)
q = self.fc2(h)
self._cur_value = self.value_branch(h).squeeze(1)
return q, [h]
"""
@override(ModelV2)
def forward(self, input_dict, state, seq_lens):
"""Adds time dimension to batch before sending inputs to forward_rnn().
You should implement forward_rnn() in your subclass."""
if isinstance(seq_lens, np.ndarray):
seq_lens = torch.Tensor(seq_lens).int()
output, new_state = self.forward_rnn(
add_time_dimension(
input_dict["obs_flat"].float(), seq_lens, framework="torch"),
state, seq_lens)
return torch.reshape(output, [-1, self.num_outputs]), new_state
def forward_rnn(self, inputs, state, seq_lens):
"""Call the model with the given input tensors and state.
Args:
inputs (dict): Observation tensor with shape [B, T, obs_size].
state (list): List of state tensors, each with shape [B, size].
seq_lens (Tensor): 1D tensor holding input sequence lengths.
Note: len(seq_lens) == B.
Returns:
(outputs, new_state): The model output tensor of shape
[B, T, num_outputs] and the list of new state tensors each with
shape [B, size].
Examples:
def forward_rnn(self, inputs, state, seq_lens):
model_out, h, c = self.rnn_model([inputs, seq_lens] + state)
return model_out, [h, c]
"""
raise NotImplementedError("You must implement this for an RNN model")
class LSTMWrapper(RecurrentNetwork, nn.Module):
"""An LSTM wrapper serving as an interface for ModelV2s that set use_lstm.
"""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
nn.Module.__init__(self)
super().__init__(obs_space, action_space, None, model_config, name)
self.cell_size = model_config["lstm_cell_size"]
self.use_prev_action_reward = model_config[
"lstm_use_prev_action_reward"]
self.action_dim = int(np.product(action_space.shape))
# Add prev-action/reward nodes to input to LSTM.
if self.use_prev_action_reward:
self.num_outputs += 1 + self.action_dim
self.lstm = nn.LSTM(self.num_outputs, self.cell_size, batch_first=True)
self.num_outputs = num_outputs
# Postprocess LSTM output with another hidden layer and compute values.
self._logits_branch = SlimFC(
in_size=self.cell_size,
out_size=self.num_outputs,
activation_fn=None,
initializer=torch.nn.init.xavier_uniform_)
self._value_branch = SlimFC(
in_size=self.cell_size,
out_size=1,
activation_fn=None,
initializer=torch.nn.init.xavier_uniform_)
@override(RecurrentNetwork)
def forward(self, input_dict, state, seq_lens):
assert seq_lens is not None
# Push obs through "unwrapped" net's `forward()` first.
wrapped_out, _ = self._wrapped_forward(input_dict, [], None)
# Concat. prev-action/reward if required.
if self.model_config["lstm_use_prev_action_reward"]:
wrapped_out = torch.cat(
[
wrapped_out,
torch.reshape(input_dict[SampleBatch.PREV_ACTIONS].float(),
[-1, self.action_dim]),
torch.reshape(input_dict[SampleBatch.PREV_REWARDS],
[-1, 1]),
],
dim=1)
# Then through our LSTM.
input_dict["obs_flat"] = wrapped_out
return super().forward(input_dict, state, seq_lens)
@override(RecurrentNetwork)
def forward_rnn(self, inputs, state, seq_lens):
self._features, [h, c] = self.lstm(
inputs,
[torch.unsqueeze(state[0], 0),
torch.unsqueeze(state[1], 0)])
model_out = self._logits_branch(self._features)
return model_out, [torch.squeeze(h, 0), torch.squeeze(c, 0)]
@override(ModelV2)
def get_initial_state(self):
# Place hidden states on same device as model.
linear = next(self._logits_branch._model.children())
h = [
linear.weight.new(1, self.cell_size).zero_().squeeze(0),
linear.weight.new(1, self.cell_size).zero_().squeeze(0)
]
return h
@override(ModelV2)
def value_function(self):
assert self._features is not None, "must call forward() first"
return torch.reshape(self._value_branch(self._features), [-1])