ray/rllib/agents/cql/cql.py

183 lines
7.1 KiB
Python

"""CQL (derived from SAC).
"""
import numpy as np
from typing import Optional, Type
from ray.rllib.agents.cql.cql_tf_policy import CQLTFPolicy
from ray.rllib.agents.cql.cql_torch_policy import CQLTorchPolicy
from ray.rllib.agents.sac.sac import SACTrainer, \
DEFAULT_CONFIG as SAC_CONFIG
from ray.rllib.execution.metric_ops import StandardMetricsReporting
from ray.rllib.execution.replay_buffer import LocalReplayBuffer
from ray.rllib.execution.replay_ops import Replay
from ray.rllib.execution.train_ops import MultiGPUTrainOneStep, TrainOneStep, \
UpdateTargetNetwork
from ray.rllib.offline.shuffled_input import ShuffledInput
from ray.rllib.policy.policy import LEARNER_STATS_KEY, Policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils import merge_dicts
from ray.rllib.utils.typing import TrainerConfigDict
# yapf: disable
# __sphinx_doc_begin__
CQL_DEFAULT_CONFIG = merge_dicts(
SAC_CONFIG, {
# You should override this to point to an offline dataset.
"input": "sampler",
# Switch off off-policy evaluation.
"input_evaluation": [],
# Number of iterations with Behavior Cloning Pretraining.
"bc_iters": 20000,
# CQL loss temperature.
"temperature": 1.0,
# Number of actions to sample for CQL loss.
"num_actions": 10,
# Whether to use the Lagrangian for Alpha Prime (in CQL loss).
"lagrangian": False,
# Lagrangian threshold.
"lagrangian_thresh": 5.0,
# Min Q weight multiplier.
"min_q_weight": 5.0,
# Replay buffer should be larger or equal the size of the offline
# dataset.
"buffer_size": int(1e6),
})
# __sphinx_doc_end__
# yapf: enable
def validate_config(config: TrainerConfigDict):
if config["num_gpus"] > 1:
raise ValueError("`num_gpus` > 1 not yet supported for CQL!")
# CQL-torch performs the optimizer steps inside the loss function.
# Using the multi-GPU optimizer will therefore not work (see multi-GPU
# check above) and we must use the simple optimizer for now.
if config["simple_optimizer"] is not True and \
config["framework"] == "torch":
config["simple_optimizer"] = True
replay_buffer = None
def execution_plan(workers, config):
if config.get("prioritized_replay"):
prio_args = {
"prioritized_replay_alpha": config["prioritized_replay_alpha"],
"prioritized_replay_beta": config["prioritized_replay_beta"],
"prioritized_replay_eps": config["prioritized_replay_eps"],
}
else:
prio_args = {}
local_replay_buffer = LocalReplayBuffer(
num_shards=1,
learning_starts=config["learning_starts"],
buffer_size=config["buffer_size"],
replay_batch_size=config["train_batch_size"],
replay_mode=config["multiagent"]["replay_mode"],
replay_sequence_length=config.get("replay_sequence_length", 1),
replay_burn_in=config.get("burn_in", 0),
replay_zero_init_states=config.get("zero_init_states", True),
**prio_args)
global replay_buffer
replay_buffer = local_replay_buffer
def update_prio(item):
samples, info_dict = item
if config.get("prioritized_replay"):
prio_dict = {}
for policy_id, info in info_dict.items():
# TODO(sven): This is currently structured differently for
# torch/tf. Clean up these results/info dicts across
# policies (note: fixing this in torch_policy.py will
# break e.g. DDPPO!).
td_error = info.get("td_error",
info[LEARNER_STATS_KEY].get("td_error"))
samples.policy_batches[policy_id].set_get_interceptor(None)
prio_dict[policy_id] = (samples.policy_batches[policy_id]
.get("batch_indexes"), td_error)
local_replay_buffer.update_priorities(prio_dict)
return info_dict
# (2) Read and train on experiences from the replay buffer. Every batch
# returned from the LocalReplay() iterator is passed to TrainOneStep to
# take a SGD step, and then we decide whether to update the target network.
post_fn = config.get("before_learn_on_batch") or (lambda b, *a: b)
if config["simple_optimizer"]:
train_step_op = TrainOneStep(workers)
else:
train_step_op = MultiGPUTrainOneStep(
workers=workers,
sgd_minibatch_size=config["train_batch_size"],
num_sgd_iter=1,
num_gpus=config["num_gpus"],
shuffle_sequences=True,
_fake_gpus=config["_fake_gpus"],
framework=config.get("framework"))
replay_op = Replay(local_buffer=local_replay_buffer) \
.for_each(lambda x: post_fn(x, workers, config)) \
.for_each(train_step_op) \
.for_each(update_prio) \
.for_each(UpdateTargetNetwork(
workers, config["target_network_update_freq"]))
return StandardMetricsReporting(
replay_op, workers, config, by_steps_trained=True)
def get_policy_class(config: TrainerConfigDict) -> Optional[Type[Policy]]:
if config["framework"] == "torch":
return CQLTorchPolicy
def after_init(trainer):
# Add the entire dataset to Replay Buffer (global variable)
global replay_buffer
reader = trainer.workers.local_worker().input_reader
# For d4rl, add the D4RLReaders' dataset to the buffer.
if isinstance(trainer.config["input"], str) and \
"d4rl" in trainer.config["input"]:
dataset = reader.dataset
replay_buffer.add_batch(dataset)
# For a list of files, add each file's entire content to the buffer.
elif isinstance(reader, ShuffledInput):
num_batches = 0
total_timesteps = 0
for batch in reader.child.read_all_files():
num_batches += 1
total_timesteps += len(batch)
# Add NEXT_OBS if not available. This is slightly hacked
# as for the very last time step, we will use next-obs=zeros
# and therefore force-set DONE=True to avoid this missing
# next-obs to cause learning problems.
if SampleBatch.NEXT_OBS not in batch:
obs = batch[SampleBatch.OBS]
batch[SampleBatch.NEXT_OBS] = \
np.concatenate([obs[1:], np.zeros_like(obs[0:1])])
batch[SampleBatch.DONES][-1] = True
replay_buffer.add_batch(batch)
print(
f"Loaded {num_batches} batches ({total_timesteps} ts) into the "
f"replay buffer, which has capacity {replay_buffer.buffer_size}.")
else:
raise ValueError(
"Unknown offline input! config['input'] must either be list of "
"offline files (json) or a D4RL-specific InputReader specifier "
"(e.g. 'd4rl.hopper-medium-v0').")
CQLTrainer = SACTrainer.with_updates(
name="CQL",
default_config=CQL_DEFAULT_CONFIG,
validate_config=validate_config,
default_policy=CQLTFPolicy,
get_policy_class=get_policy_class,
after_init=after_init,
execution_plan=execution_plan,
)