mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

* WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * LINT and fixes. MB-MPO and MAML not working yet. * wip * update * update * rmeove * remove dep * higher * Update requirements_rllib.txt * Update requirements_rllib.txt * relpos * no mbmpo Co-authored-by: Eric Liang <ekhliang@gmail.com>
80 lines
2.6 KiB
Python
80 lines
2.6 KiB
Python
import logging
|
|
|
|
from ray.rllib.agents.a3c.a3c_tf_policy import A3CTFPolicy
|
|
from ray.rllib.agents.trainer import with_common_config
|
|
from ray.rllib.agents.trainer_template import build_trainer
|
|
from ray.rllib.execution.rollout_ops import AsyncGradients
|
|
from ray.rllib.execution.train_ops import ApplyGradients
|
|
from ray.rllib.execution.metric_ops import StandardMetricsReporting
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# yapf: disable
|
|
# __sphinx_doc_begin__
|
|
DEFAULT_CONFIG = with_common_config({
|
|
# Should use a critic as a baseline (otherwise don't use value baseline;
|
|
# required for using GAE).
|
|
"use_critic": True,
|
|
# If true, use the Generalized Advantage Estimator (GAE)
|
|
# with a value function, see https://arxiv.org/pdf/1506.02438.pdf.
|
|
"use_gae": True,
|
|
# Size of rollout batch
|
|
"rollout_fragment_length": 10,
|
|
# GAE(gamma) parameter
|
|
"lambda": 1.0,
|
|
# Max global norm for each gradient calculated by worker
|
|
"grad_clip": 40.0,
|
|
# Learning rate
|
|
"lr": 0.0001,
|
|
# Learning rate schedule
|
|
"lr_schedule": None,
|
|
# Value Function Loss coefficient
|
|
"vf_loss_coeff": 0.5,
|
|
# Entropy coefficient
|
|
"entropy_coeff": 0.01,
|
|
# Min time per iteration
|
|
"min_iter_time_s": 5,
|
|
# Workers sample async. Note that this increases the effective
|
|
# rollout_fragment_length by up to 5x due to async buffering of batches.
|
|
"sample_async": True,
|
|
})
|
|
# __sphinx_doc_end__
|
|
# yapf: enable
|
|
|
|
|
|
def get_policy_class(config):
|
|
if config["framework"] == "torch":
|
|
from ray.rllib.agents.a3c.a3c_torch_policy import \
|
|
A3CTorchPolicy
|
|
return A3CTorchPolicy
|
|
else:
|
|
return A3CTFPolicy
|
|
|
|
|
|
def validate_config(config):
|
|
if config["entropy_coeff"] < 0:
|
|
raise DeprecationWarning("`entropy_coeff` must be >= 0")
|
|
if config["sample_async"] and config["framework"] == "torch":
|
|
config["sample_async"] = False
|
|
logger.warning("`sample_async=True` is not supported for PyTorch! "
|
|
"Multithreading can lead to crashes.")
|
|
|
|
|
|
def execution_plan(workers, config):
|
|
# For A3C, compute policy gradients remotely on the rollout workers.
|
|
grads = AsyncGradients(workers)
|
|
|
|
# Apply the gradients as they arrive. We set update_all to False so that
|
|
# only the worker sending the gradient is updated with new weights.
|
|
train_op = grads.for_each(ApplyGradients(workers, update_all=False))
|
|
|
|
return StandardMetricsReporting(train_op, workers, config)
|
|
|
|
|
|
A3CTrainer = build_trainer(
|
|
name="A3C",
|
|
default_config=DEFAULT_CONFIG,
|
|
default_policy=A3CTFPolicy,
|
|
get_policy_class=get_policy_class,
|
|
validate_config=validate_config,
|
|
execution_plan=execution_plan)
|