ray/rllib/examples/custom_torch_policy.py
xwjiang2010 fcf897ee72
[air] update rllib example to use Tuner API. (#26987)
update rllib example to use Tuner API.

Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
2022-07-27 12:12:59 +01:00

50 lines
1.5 KiB
Python

import argparse
import os
import ray
from ray import air, tune
from ray.rllib.algorithms.algorithm import Algorithm
from ray.rllib.policy.policy_template import build_policy_class
from ray.rllib.policy.sample_batch import SampleBatch
parser = argparse.ArgumentParser()
parser.add_argument("--stop-iters", type=int, default=200)
parser.add_argument("--num-cpus", type=int, default=0)
def policy_gradient_loss(policy, model, dist_class, train_batch):
logits, _ = model({SampleBatch.CUR_OBS: train_batch[SampleBatch.CUR_OBS]})
action_dist = dist_class(logits, model)
log_probs = action_dist.logp(train_batch[SampleBatch.ACTIONS])
return -train_batch[SampleBatch.REWARDS].dot(log_probs)
# <class 'ray.rllib.policy.torch_policy_template.MyTorchPolicy'>
MyTorchPolicy = build_policy_class(
name="MyTorchPolicy", framework="torch", loss_fn=policy_gradient_loss
)
# Create a new Algorithm using the Policy defined above.
class MyAlgorithm(Algorithm):
def get_default_policy_class(self, config):
return MyTorchPolicy
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None)
tuner = tune.Tuner(
MyAlgorithm,
run_config=air.RunConfig(
stop={"training_iteration": args.stop_iters},
),
param_space={
"env": "CartPole-v0",
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"num_workers": 2,
"framework": "torch",
},
)
tuner.fit()