mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
94 lines
3.1 KiB
Python
94 lines
3.1 KiB
Python
"""Example of using a custom RNN keras model."""
|
|
|
|
import argparse
|
|
import os
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.tune.registry import register_env
|
|
from ray.rllib.examples.env.repeat_after_me_env import RepeatAfterMeEnv
|
|
from ray.rllib.examples.env.repeat_initial_obs_env import RepeatInitialObsEnv
|
|
from ray.rllib.examples.models.rnn_model import RNNModel, TorchRNNModel
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--run", type=str, default="PPO")
|
|
parser.add_argument("--env", type=str, default="RepeatAfterMeEnv")
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
parser.add_argument("--as-test", action="store_true")
|
|
parser.add_argument("--torch", action="store_true")
|
|
parser.add_argument("--stop-reward", type=float, default=90)
|
|
parser.add_argument("--stop-iters", type=int, default=100)
|
|
parser.add_argument("--stop-timesteps", type=int, default=100000)
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
|
|
ray.init(num_cpus=args.num_cpus or None)
|
|
|
|
ModelCatalog.register_custom_model(
|
|
"rnn", TorchRNNModel if args.torch else RNNModel)
|
|
register_env("RepeatAfterMeEnv", lambda c: RepeatAfterMeEnv(c))
|
|
register_env("RepeatInitialObsEnv", lambda _: RepeatInitialObsEnv())
|
|
|
|
config = {
|
|
"env": args.env,
|
|
"env_config": {
|
|
"repeat_delay": 2,
|
|
},
|
|
"gamma": 0.9,
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"num_workers": 0,
|
|
"num_envs_per_worker": 20,
|
|
"entropy_coeff": 0.001,
|
|
"num_sgd_iter": 5,
|
|
"vf_loss_coeff": 1e-5,
|
|
"model": {
|
|
"custom_model": "rnn",
|
|
"max_seq_len": 20,
|
|
"custom_model_config": {
|
|
"cell_size": 32,
|
|
},
|
|
},
|
|
"framework": "torch" if args.torch else "tf",
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
# To run the Trainer without tune.run, using our RNN model and
|
|
# manual state-in handling, do the following:
|
|
|
|
# Example (use `config` from the above code):
|
|
# >> import numpy as np
|
|
# >> from ray.rllib.agents.ppo import PPOTrainer
|
|
# >>
|
|
# >> trainer = PPOTrainer(config)
|
|
# >> lstm_cell_size = config["model"]["custom_model_config"]["cell_size"]
|
|
# >> env = RepeatAfterMeEnv({})
|
|
# >> obs = env.reset()
|
|
# >>
|
|
# >> # range(2) b/c h- and c-states of the LSTM.
|
|
# >> init_state = state = [
|
|
# .. np.zeros([lstm_cell_size], np.float32) for _ in range(2)
|
|
# .. ]
|
|
# >>
|
|
# >> while True:
|
|
# >> a, state_out, _ = trainer.compute_action(obs, state)
|
|
# >> obs, reward, done, _ = env.step(a)
|
|
# >> if done:
|
|
# >> obs = env.reset()
|
|
# >> state = init_state
|
|
# >> else:
|
|
# >> state = state_out
|
|
|
|
results = tune.run(args.run, config=config, stop=stop, verbose=1)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
ray.shutdown()
|