ray/rllib/examples/trajectory_view_api.py

50 lines
1.6 KiB
Python

import argparse
import ray
from ray import tune
from ray.rllib.examples.models.trajectory_view_utilizing_models import \
FrameStackingCartPoleModel, TorchFrameStackingCartPoleModel
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check_learning_achieved
tf1, tf, tfv = try_import_tf()
parser = argparse.ArgumentParser()
parser.add_argument("--run", type=str, default="PPO")
parser.add_argument(
"--framework", choices=["tf2", "tf", "tfe", "torch"], default="tf")
parser.add_argument("--as-test", action="store_true")
parser.add_argument("--stop-iters", type=int, default=50)
parser.add_argument("--stop-timesteps", type=int, default=100000)
parser.add_argument("--stop-reward", type=float, default=150.0)
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=3)
ModelCatalog.register_custom_model(
"frame_stack_model", FrameStackingCartPoleModel
if args.framework != "torch" else TorchFrameStackingCartPoleModel)
config = {
"env": "CartPole-v0",
"model": {
"custom_model": "frame_stack_model",
"custom_model_config": {
"num_frames": 4,
}
},
"framework": args.framework,
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
results = tune.run(args.run, config=config, stop=stop, verbose=2)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()