ray/rllib/agents/ppo/tests/test_ddppo.py

53 lines
1.7 KiB
Python

import unittest
import ray
import ray.rllib.agents.ppo as ppo
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
from ray.rllib.policy.policy import LEARNER_STATS_KEY
from ray.rllib.utils.test_utils import check_compute_single_action, \
framework_iterator
class TestDDPPO(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init()
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_ddppo_compilation(self):
"""Test whether a DDPPOTrainer can be built with both frameworks."""
config = ppo.ddppo.DEFAULT_CONFIG.copy()
config["num_gpus_per_worker"] = 0
num_iterations = 2
for _ in framework_iterator(config, "torch"):
trainer = ppo.ddppo.DDPPOTrainer(config=config, env="CartPole-v0")
for i in range(num_iterations):
trainer.train()
check_compute_single_action(trainer)
trainer.stop()
def test_ddppo_schedule(self):
"""Test whether lr_schedule will anneal lr to 0"""
config = ppo.ddppo.DEFAULT_CONFIG.copy()
config["num_gpus_per_worker"] = 0
config["lr_schedule"] = [[0, config["lr"]], [1000, 0.0]]
num_iterations = 3
for _ in framework_iterator(config, "torch"):
trainer = ppo.ddppo.DDPPOTrainer(config=config, env="CartPole-v0")
for _ in range(num_iterations):
result = trainer.train()
lr = result["info"]["learner"][DEFAULT_POLICY_ID][
LEARNER_STATS_KEY]["cur_lr"]
trainer.stop()
assert lr == 0.0, "lr should anneal to 0.0"
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))