mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
56 lines
2.4 KiB
ReStructuredText
56 lines
2.4 KiB
ReStructuredText
.. algorithm-reference-docs:
|
|
|
|
Algorithm API
|
|
=============
|
|
|
|
The :py:class:`~ray.rllib.algorithms.algorithm.Algorithm` class is the highest-level API in RLlib.
|
|
It allows you to train and evaluate policies, save an experiment's progress and restore from
|
|
a prior saved experiment when continuing an RL run.
|
|
:py:class:`~ray.rllib.algorithms.algorithm.Algorithm` is a sub-class
|
|
of :py:class:`~ray.tune.Trainable`
|
|
and thus fully supports distributed hyperparameter tuning for RL.
|
|
|
|
.. https://docs.google.com/drawings/d/1J0nfBMZ8cBff34e-nSPJZMM1jKOuUL11zFJm6CmWtJU/edit
|
|
.. figure:: ../images/trainer_class_overview.svg
|
|
:align: left
|
|
|
|
**A typical RLlib Algorithm object:** The components sitting inside an Algorithm are
|
|
normally N :py:class:`~ray.rllib.evaluation.worker_set.WorkerSet`s
|
|
(each consisting of one local :py:class:`~ray.rllib.evaluation.RolloutWorker`
|
|
and zero or more \@ray.remote
|
|
:py:class:`~ray.rllib.evaluation.RolloutWorker`s),
|
|
a set of :py:class:`~ray.rllib.policy.Policy`(ies)
|
|
and their NN models per worker, and a (already vectorized)
|
|
RLlib :py:class:`~ray.rllib.env.base_env.BaseEnv` per worker.
|
|
|
|
|
|
Building Custom Algorithm Classes
|
|
---------------------------------
|
|
|
|
.. warning::
|
|
As of Ray >= 1.9, it is no longer recommended to use the `build_trainer()` utility
|
|
function for creating custom Algorithm sub-classes.
|
|
Instead, follow the simple guidelines here for directly sub-classing from
|
|
:py:class:`~ray.rllib.algorithms.algorithm.Algorithm`.
|
|
|
|
In order to create a custom Algorithm, sub-class the
|
|
:py:class:`~ray.rllib.algorithms.algorithm.Algorithm` class
|
|
and override one or more of its methods. Those are in particular:
|
|
|
|
* :py:meth:`~ray.rllib.algorithms.algorithm.Algorithm.get_default_config`
|
|
* :py:meth:`~ray.rllib.algorithms.algorithm.Algorithm.validate_config`
|
|
* :py:meth:`~ray.rllib.algorithms.algorithm.Algorithm.get_default_policy_class`
|
|
* :py:meth:`~ray.rllib.algorithms.algorithm.Algorithm.setup`
|
|
* :py:meth:`~ray.rllib.algorithms.algorithm.Algorithm.training_iteration`
|
|
|
|
`See here for an example on how to override Algorithm <https://github.com/ray-project/ray/blob/master/rllib/algorithms/pg/pg.py>`_.
|
|
|
|
|
|
Algorithm base class (ray.rllib.algorithms.algorithm.Algorithm)
|
|
---------------------------------------------------------------
|
|
|
|
.. autoclass:: ray.rllib.algorithms.algorithm.Algorithm
|
|
:special-members: __init__
|
|
:members:
|
|
|
|
.. static-members: get_default_config, execution_plan
|