mirror of
https://github.com/vale981/ray
synced 2025-03-05 10:01:43 -05:00
206 lines
7.1 KiB
Python
Executable file
206 lines
7.1 KiB
Python
Executable file
#!/usr/bin/env python
|
|
|
|
import argparse
|
|
import yaml
|
|
|
|
import ray
|
|
from ray.cluster_utils import Cluster
|
|
from ray.tune.config_parser import make_parser
|
|
from ray.tune.result import DEFAULT_RESULTS_DIR
|
|
from ray.tune.resources import resources_to_json
|
|
from ray.tune.tune import _make_scheduler, run_experiments
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch
|
|
|
|
# Try to import both backends for flag checking/warnings.
|
|
tf = try_import_tf()
|
|
torch, _ = try_import_torch()
|
|
|
|
EXAMPLE_USAGE = """
|
|
Training example via RLlib CLI:
|
|
rllib train --run DQN --env CartPole-v0
|
|
|
|
Grid search example via RLlib CLI:
|
|
rllib train -f tuned_examples/cartpole-grid-search-example.yaml
|
|
|
|
Grid search example via executable:
|
|
./train.py -f tuned_examples/cartpole-grid-search-example.yaml
|
|
|
|
Note that -f overrides all other trial-specific command-line options.
|
|
"""
|
|
|
|
|
|
def create_parser(parser_creator=None):
|
|
parser = make_parser(
|
|
parser_creator=parser_creator,
|
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
description="Train a reinforcement learning agent.",
|
|
epilog=EXAMPLE_USAGE)
|
|
|
|
# See also the base parser definition in ray/tune/config_parser.py
|
|
parser.add_argument(
|
|
"--ray-address",
|
|
default=None,
|
|
type=str,
|
|
help="Connect to an existing Ray cluster at this address instead "
|
|
"of starting a new one.")
|
|
parser.add_argument(
|
|
"--ray-num-cpus",
|
|
default=None,
|
|
type=int,
|
|
help="--num-cpus to use if starting a new cluster.")
|
|
parser.add_argument(
|
|
"--ray-num-gpus",
|
|
default=None,
|
|
type=int,
|
|
help="--num-gpus to use if starting a new cluster.")
|
|
parser.add_argument(
|
|
"--ray-num-nodes",
|
|
default=None,
|
|
type=int,
|
|
help="Emulate multiple cluster nodes for debugging.")
|
|
parser.add_argument(
|
|
"--ray-redis-max-memory",
|
|
default=None,
|
|
type=int,
|
|
help="--redis-max-memory to use if starting a new cluster.")
|
|
parser.add_argument(
|
|
"--ray-memory",
|
|
default=None,
|
|
type=int,
|
|
help="--memory to use if starting a new cluster.")
|
|
parser.add_argument(
|
|
"--ray-object-store-memory",
|
|
default=None,
|
|
type=int,
|
|
help="--object-store-memory to use if starting a new cluster.")
|
|
parser.add_argument(
|
|
"--experiment-name",
|
|
default="default",
|
|
type=str,
|
|
help="Name of the subdirectory under `local_dir` to put results in.")
|
|
parser.add_argument(
|
|
"--local-dir",
|
|
default=DEFAULT_RESULTS_DIR,
|
|
type=str,
|
|
help="Local dir to save training results to. Defaults to '{}'.".format(
|
|
DEFAULT_RESULTS_DIR))
|
|
parser.add_argument(
|
|
"--upload-dir",
|
|
default="",
|
|
type=str,
|
|
help="Optional URI to sync training results to (e.g. s3://bucket).")
|
|
parser.add_argument(
|
|
"-v", action="store_true", help="Whether to use INFO level logging.")
|
|
parser.add_argument(
|
|
"-vv", action="store_true", help="Whether to use DEBUG level logging.")
|
|
parser.add_argument(
|
|
"--resume",
|
|
action="store_true",
|
|
help="Whether to attempt to resume previous Tune experiments.")
|
|
parser.add_argument(
|
|
"--torch",
|
|
action="store_true",
|
|
help="Whether to use PyTorch (instead of tf) as the DL framework.")
|
|
parser.add_argument(
|
|
"--eager",
|
|
action="store_true",
|
|
help="Whether to attempt to enable TF eager execution.")
|
|
parser.add_argument(
|
|
"--trace",
|
|
action="store_true",
|
|
help="Whether to attempt to enable tracing for eager mode.")
|
|
parser.add_argument(
|
|
"--env", default=None, type=str, help="The gym environment to use.")
|
|
parser.add_argument(
|
|
"--queue-trials",
|
|
action="store_true",
|
|
help=(
|
|
"Whether to queue trials when the cluster does not currently have "
|
|
"enough resources to launch one. This should be set to True when "
|
|
"running on an autoscaling cluster to enable automatic scale-up."))
|
|
parser.add_argument(
|
|
"-f",
|
|
"--config-file",
|
|
default=None,
|
|
type=str,
|
|
help="If specified, use config options from this file. Note that this "
|
|
"overrides any trial-specific options set via flags above.")
|
|
return parser
|
|
|
|
|
|
def run(args, parser):
|
|
if args.config_file:
|
|
with open(args.config_file) as f:
|
|
experiments = yaml.safe_load(f)
|
|
else:
|
|
# Note: keep this in sync with tune/config_parser.py
|
|
experiments = {
|
|
args.experiment_name: { # i.e. log to ~/ray_results/default
|
|
"run": args.run,
|
|
"checkpoint_freq": args.checkpoint_freq,
|
|
"keep_checkpoints_num": args.keep_checkpoints_num,
|
|
"checkpoint_score_attr": args.checkpoint_score_attr,
|
|
"local_dir": args.local_dir,
|
|
"resources_per_trial": (
|
|
args.resources_per_trial and
|
|
resources_to_json(args.resources_per_trial)),
|
|
"stop": args.stop,
|
|
"config": dict(args.config, env=args.env),
|
|
"restore": args.restore,
|
|
"num_samples": args.num_samples,
|
|
"upload_dir": args.upload_dir,
|
|
}
|
|
}
|
|
|
|
verbose = 1
|
|
for exp in experiments.values():
|
|
if not exp.get("run"):
|
|
parser.error("the following arguments are required: --run")
|
|
if not exp.get("env") and not exp.get("config", {}).get("env"):
|
|
parser.error("the following arguments are required: --env")
|
|
if args.eager:
|
|
exp["config"]["eager"] = True
|
|
if args.torch:
|
|
exp["config"]["use_pytorch"] = True
|
|
if args.v:
|
|
exp["config"]["log_level"] = "INFO"
|
|
verbose = 2
|
|
if args.vv:
|
|
exp["config"]["log_level"] = "DEBUG"
|
|
verbose = 3
|
|
if args.trace:
|
|
if not exp["config"].get("eager"):
|
|
raise ValueError("Must enable --eager to enable tracing.")
|
|
exp["config"]["eager_tracing"] = True
|
|
|
|
if args.ray_num_nodes:
|
|
cluster = Cluster()
|
|
for _ in range(args.ray_num_nodes):
|
|
cluster.add_node(
|
|
num_cpus=args.ray_num_cpus or 1,
|
|
num_gpus=args.ray_num_gpus or 0,
|
|
object_store_memory=args.ray_object_store_memory,
|
|
memory=args.ray_memory,
|
|
redis_max_memory=args.ray_redis_max_memory)
|
|
ray.init(address=cluster.address)
|
|
else:
|
|
ray.init(
|
|
address=args.ray_address,
|
|
object_store_memory=args.ray_object_store_memory,
|
|
memory=args.ray_memory,
|
|
redis_max_memory=args.ray_redis_max_memory,
|
|
num_cpus=args.ray_num_cpus,
|
|
num_gpus=args.ray_num_gpus)
|
|
run_experiments(
|
|
experiments,
|
|
scheduler=_make_scheduler(args),
|
|
queue_trials=args.queue_trials,
|
|
resume=args.resume,
|
|
verbose=verbose,
|
|
concurrent=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = create_parser()
|
|
args = parser.parse_args()
|
|
run(args, parser)
|