mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

* bulk rename * deprecation warn * update doc * update fig * line length * rename * make pytest comptaible * fix test * fi sys * rename * wip * fix more * lint * update svg * comments * lint * fix use of batch steps
271 lines
10 KiB
Python
271 lines
10 KiB
Python
import logging
|
|
from types import FunctionType
|
|
|
|
import ray
|
|
from ray.rllib.utils.annotations import DeveloperAPI
|
|
from ray.rllib.evaluation.rollout_worker import RolloutWorker, \
|
|
_validate_multiagent_config
|
|
from ray.rllib.offline import NoopOutput, JsonReader, MixedInput, JsonWriter, \
|
|
ShuffledInput
|
|
from ray.rllib.utils import merge_dicts, try_import_tf
|
|
from ray.rllib.utils.memory import ray_get_and_free
|
|
|
|
tf = try_import_tf()
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@DeveloperAPI
|
|
class WorkerSet:
|
|
"""Represents a set of RolloutWorkers.
|
|
|
|
There must be one local worker copy, and zero or more remote workers.
|
|
"""
|
|
|
|
def __init__(self,
|
|
env_creator,
|
|
policy,
|
|
trainer_config=None,
|
|
num_workers=0,
|
|
logdir=None,
|
|
_setup=True):
|
|
"""Create a new WorkerSet and initialize its workers.
|
|
|
|
Arguments:
|
|
env_creator (func): Function that returns env given env config.
|
|
policy (cls): rllib.policy.Policy class.
|
|
trainer_config (dict): Optional dict that extends the common
|
|
config of the Trainer class.
|
|
num_workers (int): Number of remote rollout workers to create.
|
|
logdir (str): Optional logging directory for workers.
|
|
_setup (bool): Whether to setup workers. This is only for testing.
|
|
"""
|
|
|
|
if not trainer_config:
|
|
from ray.rllib.agents.trainer import COMMON_CONFIG
|
|
trainer_config = COMMON_CONFIG
|
|
|
|
self._env_creator = env_creator
|
|
self._policy = policy
|
|
self._remote_config = trainer_config
|
|
self._num_workers = num_workers
|
|
self._logdir = logdir
|
|
|
|
if _setup:
|
|
self._local_config = merge_dicts(
|
|
trainer_config,
|
|
{"tf_session_args": trainer_config["local_tf_session_args"]})
|
|
|
|
# Always create a local worker
|
|
self._local_worker = self._make_worker(
|
|
RolloutWorker, env_creator, policy, 0, self._local_config)
|
|
|
|
# Create a number of remote workers
|
|
self._remote_workers = []
|
|
self.add_workers(self._num_workers)
|
|
|
|
def local_worker(self):
|
|
"""Return the local rollout worker."""
|
|
return self._local_worker
|
|
|
|
def remote_workers(self):
|
|
"""Return a list of remote rollout workers."""
|
|
return self._remote_workers
|
|
|
|
def sync_weights(self):
|
|
"""Syncs weights of remote workers with the local worker."""
|
|
if self.remote_workers():
|
|
weights = ray.put(self.local_worker().get_weights())
|
|
for e in self.remote_workers():
|
|
e.set_weights.remote(weights)
|
|
|
|
def add_workers(self, num_workers):
|
|
"""Creates and add a number of remote workers to this worker set.
|
|
|
|
Args:
|
|
num_workers (int): The number of remote Workers to add to this
|
|
WorkerSet.
|
|
"""
|
|
self._num_workers = num_workers
|
|
remote_args = {
|
|
"num_cpus": self._remote_config["num_cpus_per_worker"],
|
|
"num_gpus": self._remote_config["num_gpus_per_worker"],
|
|
"memory": self._remote_config["memory_per_worker"],
|
|
"object_store_memory": self._remote_config[
|
|
"object_store_memory_per_worker"],
|
|
"resources": self._remote_config["custom_resources_per_worker"],
|
|
}
|
|
cls = RolloutWorker.as_remote(**remote_args).remote
|
|
self._remote_workers.extend([
|
|
self._make_worker(cls, self._env_creator, self._policy, i + 1,
|
|
self._remote_config) for i in range(num_workers)
|
|
])
|
|
|
|
def reset(self, new_remote_workers):
|
|
"""Called to change the set of remote workers."""
|
|
self._remote_workers = new_remote_workers
|
|
|
|
def stop(self):
|
|
"""Stop all rollout workers."""
|
|
self.local_worker().stop()
|
|
for w in self.remote_workers():
|
|
w.stop.remote()
|
|
w.__ray_terminate__.remote()
|
|
|
|
@DeveloperAPI
|
|
def foreach_worker(self, func):
|
|
"""Apply the given function to each worker instance."""
|
|
|
|
local_result = [func(self.local_worker())]
|
|
remote_results = ray_get_and_free(
|
|
[w.apply.remote(func) for w in self.remote_workers()])
|
|
return local_result + remote_results
|
|
|
|
@DeveloperAPI
|
|
def foreach_worker_with_index(self, func):
|
|
"""Apply the given function to each worker instance.
|
|
|
|
The index will be passed as the second arg to the given function.
|
|
"""
|
|
local_result = [func(self.local_worker(), 0)]
|
|
remote_results = ray_get_and_free([
|
|
w.apply.remote(func, i + 1)
|
|
for i, w in enumerate(self.remote_workers())
|
|
])
|
|
return local_result + remote_results
|
|
|
|
@DeveloperAPI
|
|
def foreach_policy(self, func):
|
|
"""Apply the given function to each worker's (policy, policy_id) tuple.
|
|
|
|
Args:
|
|
func (callable): A function - taking a Policy and its ID - that is
|
|
called on all workers' Policies.
|
|
|
|
Returns:
|
|
List[any]: The list of return values of func over all workers'
|
|
policies.
|
|
"""
|
|
local_results = self.local_worker().foreach_policy(func)
|
|
remote_results = []
|
|
for worker in self.remote_workers():
|
|
res = ray_get_and_free(
|
|
worker.apply.remote(lambda w: w.foreach_policy(func)))
|
|
remote_results.extend(res)
|
|
return local_results + remote_results
|
|
|
|
@DeveloperAPI
|
|
def foreach_trainable_policy(self, func):
|
|
"""Apply `func` to all workers' Policies iff in `policies_to_train`.
|
|
|
|
Args:
|
|
func (callable): A function - taking a Policy and its ID - that is
|
|
called on all workers' Policies in `worker.policies_to_train`.
|
|
|
|
Returns:
|
|
List[any]: The list of n return values of all
|
|
`func([trainable policy], [ID])`-calls.
|
|
"""
|
|
local_results = self.local_worker().foreach_trainable_policy(func)
|
|
remote_results = []
|
|
for worker in self.remote_workers():
|
|
res = ray_get_and_free(
|
|
worker.apply.remote(
|
|
lambda w: w.foreach_trainable_policy(func)))
|
|
remote_results.extend(res)
|
|
return local_results + remote_results
|
|
|
|
@staticmethod
|
|
def _from_existing(local_worker, remote_workers=None):
|
|
workers = WorkerSet(None, None, {}, _setup=False)
|
|
workers._local_worker = local_worker
|
|
workers._remote_workers = remote_workers or []
|
|
return workers
|
|
|
|
def _make_worker(self, cls, env_creator, policy, worker_index, config):
|
|
def session_creator():
|
|
logger.debug("Creating TF session {}".format(
|
|
config["tf_session_args"]))
|
|
return tf.Session(
|
|
config=tf.ConfigProto(**config["tf_session_args"]))
|
|
|
|
if isinstance(config["input"], FunctionType):
|
|
input_creator = config["input"]
|
|
elif config["input"] == "sampler":
|
|
input_creator = (lambda ioctx: ioctx.default_sampler_input())
|
|
elif isinstance(config["input"], dict):
|
|
input_creator = (lambda ioctx: ShuffledInput(
|
|
MixedInput(config["input"], ioctx), config[
|
|
"shuffle_buffer_size"]))
|
|
else:
|
|
input_creator = (lambda ioctx: ShuffledInput(
|
|
JsonReader(config["input"], ioctx), config[
|
|
"shuffle_buffer_size"]))
|
|
|
|
if isinstance(config["output"], FunctionType):
|
|
output_creator = config["output"]
|
|
elif config["output"] is None:
|
|
output_creator = (lambda ioctx: NoopOutput())
|
|
elif config["output"] == "logdir":
|
|
output_creator = (lambda ioctx: JsonWriter(
|
|
ioctx.log_dir,
|
|
ioctx,
|
|
max_file_size=config["output_max_file_size"],
|
|
compress_columns=config["output_compress_columns"]))
|
|
else:
|
|
output_creator = (lambda ioctx: JsonWriter(
|
|
config["output"],
|
|
ioctx,
|
|
max_file_size=config["output_max_file_size"],
|
|
compress_columns=config["output_compress_columns"]))
|
|
|
|
if config["input"] == "sampler":
|
|
input_evaluation = []
|
|
else:
|
|
input_evaluation = config["input_evaluation"]
|
|
|
|
# Fill in the default policy if 'None' is specified in multiagent
|
|
if config["multiagent"]["policies"]:
|
|
tmp = config["multiagent"]["policies"]
|
|
_validate_multiagent_config(tmp, allow_none_graph=True)
|
|
for k, v in tmp.items():
|
|
if v[0] is None:
|
|
tmp[k] = (policy, v[1], v[2], v[3])
|
|
policy = tmp
|
|
|
|
return cls(
|
|
env_creator,
|
|
policy,
|
|
policy_mapping_fn=config["multiagent"]["policy_mapping_fn"],
|
|
policies_to_train=config["multiagent"]["policies_to_train"],
|
|
tf_session_creator=(session_creator
|
|
if config["tf_session_args"] else None),
|
|
rollout_fragment_length=config["rollout_fragment_length"],
|
|
batch_mode=config["batch_mode"],
|
|
episode_horizon=config["horizon"],
|
|
preprocessor_pref=config["preprocessor_pref"],
|
|
sample_async=config["sample_async"],
|
|
compress_observations=config["compress_observations"],
|
|
num_envs=config["num_envs_per_worker"],
|
|
observation_filter=config["observation_filter"],
|
|
clip_rewards=config["clip_rewards"],
|
|
clip_actions=config["clip_actions"],
|
|
env_config=config["env_config"],
|
|
model_config=config["model"],
|
|
policy_config=config,
|
|
worker_index=worker_index,
|
|
num_workers=self._num_workers,
|
|
monitor_path=self._logdir if config["monitor"] else None,
|
|
log_dir=self._logdir,
|
|
log_level=config["log_level"],
|
|
callbacks=config["callbacks"],
|
|
input_creator=input_creator,
|
|
input_evaluation=input_evaluation,
|
|
output_creator=output_creator,
|
|
remote_worker_envs=config["remote_worker_envs"],
|
|
remote_env_batch_wait_ms=config["remote_env_batch_wait_ms"],
|
|
soft_horizon=config["soft_horizon"],
|
|
no_done_at_end=config["no_done_at_end"],
|
|
seed=(config["seed"] + worker_index)
|
|
if config["seed"] is not None else None,
|
|
_fake_sampler=config.get("_fake_sampler", False))
|