ray/rllib/agents/dqn/tests/test_dqn.py
2020-03-28 16:16:30 -07:00

134 lines
4.8 KiB
Python

import numpy as np
from tensorflow.python.eager.context import eager_mode
import unittest
import ray.rllib.agents.dqn as dqn
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check
tf = try_import_tf()
class TestDQN(unittest.TestCase):
def test_dqn_compilation(self):
"""Test whether a DQNTrainer can be built with both frameworks."""
config = dqn.DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
# Rainbow.
rainbow_config = config.copy()
rainbow_config["eager"] = False
rainbow_config["num_atoms"] = 10
rainbow_config["noisy"] = True
rainbow_config["double_q"] = True
rainbow_config["dueling"] = True
rainbow_config["n_step"] = 5
trainer = dqn.DQNTrainer(config=rainbow_config, env="CartPole-v0")
num_iterations = 2
for i in range(num_iterations):
results = trainer.train()
print(results)
# tf.
tf_config = config.copy()
tf_config["eager"] = False
trainer = dqn.DQNTrainer(config=tf_config, env="CartPole-v0")
num_iterations = 1
for i in range(num_iterations):
results = trainer.train()
print(results)
# Eager.
eager_config = config.copy()
eager_config["eager"] = True
eager_ctx = eager_mode()
eager_ctx.__enter__()
trainer = dqn.DQNTrainer(config=eager_config, env="CartPole-v0")
num_iterations = 1
for i in range(num_iterations):
results = trainer.train()
print(results)
eager_ctx.__exit__(None, None, None)
def test_dqn_exploration_and_soft_q_config(self):
"""Tests, whether a DQN Agent outputs exploration/softmaxed actions."""
config = dqn.DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
config["env_config"] = {"is_slippery": False, "map_name": "4x4"}
obs = np.array(0)
# Test against all frameworks.
for fw in ["tf", "eager", "torch"]:
if fw == "torch":
continue
print("framework={}".format(fw))
eager_mode_ctx = None
if fw == "tf":
assert not tf.executing_eagerly()
else:
eager_mode_ctx = eager_mode()
eager_mode_ctx.__enter__()
config["eager"] = fw == "eager"
config["use_pytorch"] = fw == "torch"
# Default EpsilonGreedy setup.
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
# Setting explore=False should always return the same action.
a_ = trainer.compute_action(obs, explore=False)
for _ in range(50):
a = trainer.compute_action(obs, explore=False)
check(a, a_)
# explore=None (default: explore) should return different actions.
actions = []
for _ in range(50):
actions.append(trainer.compute_action(obs))
check(np.std(actions), 0.0, false=True)
# Low softmax temperature. Behaves like argmax
# (but no epsilon exploration).
config["exploration_config"] = {
"type": "SoftQ",
"temperature": 0.001
}
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
# Due to the low temp, always expect the same action.
a_ = trainer.compute_action(obs)
for _ in range(50):
a = trainer.compute_action(obs)
check(a, a_)
# Higher softmax temperature.
config["exploration_config"]["temperature"] = 1.0
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
# Even with the higher temperature, if we set explore=False, we
# should expect the same actions always.
a_ = trainer.compute_action(obs, explore=False)
for _ in range(50):
a = trainer.compute_action(obs, explore=False)
check(a, a_)
# Due to the higher temp, expect different actions avg'ing
# around 1.5.
actions = []
for _ in range(300):
actions.append(trainer.compute_action(obs))
check(np.std(actions), 0.0, false=True)
# With Random exploration.
config["exploration_config"] = {"type": "Random"}
config["explore"] = True
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
actions = []
for _ in range(300):
actions.append(trainer.compute_action(obs))
check(np.std(actions), 0.0, false=True)
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))