mirror of
https://github.com/vale981/ray
synced 2025-03-08 19:41:38 -05:00
134 lines
4.8 KiB
Python
134 lines
4.8 KiB
Python
import numpy as np
|
|
from tensorflow.python.eager.context import eager_mode
|
|
import unittest
|
|
|
|
import ray.rllib.agents.dqn as dqn
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.test_utils import check
|
|
|
|
tf = try_import_tf()
|
|
|
|
|
|
class TestDQN(unittest.TestCase):
|
|
def test_dqn_compilation(self):
|
|
"""Test whether a DQNTrainer can be built with both frameworks."""
|
|
config = dqn.DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 0 # Run locally.
|
|
|
|
# Rainbow.
|
|
rainbow_config = config.copy()
|
|
rainbow_config["eager"] = False
|
|
rainbow_config["num_atoms"] = 10
|
|
rainbow_config["noisy"] = True
|
|
rainbow_config["double_q"] = True
|
|
rainbow_config["dueling"] = True
|
|
rainbow_config["n_step"] = 5
|
|
trainer = dqn.DQNTrainer(config=rainbow_config, env="CartPole-v0")
|
|
num_iterations = 2
|
|
for i in range(num_iterations):
|
|
results = trainer.train()
|
|
print(results)
|
|
|
|
# tf.
|
|
tf_config = config.copy()
|
|
tf_config["eager"] = False
|
|
trainer = dqn.DQNTrainer(config=tf_config, env="CartPole-v0")
|
|
num_iterations = 1
|
|
for i in range(num_iterations):
|
|
results = trainer.train()
|
|
print(results)
|
|
|
|
# Eager.
|
|
eager_config = config.copy()
|
|
eager_config["eager"] = True
|
|
eager_ctx = eager_mode()
|
|
eager_ctx.__enter__()
|
|
trainer = dqn.DQNTrainer(config=eager_config, env="CartPole-v0")
|
|
num_iterations = 1
|
|
for i in range(num_iterations):
|
|
results = trainer.train()
|
|
print(results)
|
|
eager_ctx.__exit__(None, None, None)
|
|
|
|
def test_dqn_exploration_and_soft_q_config(self):
|
|
"""Tests, whether a DQN Agent outputs exploration/softmaxed actions."""
|
|
config = dqn.DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 0 # Run locally.
|
|
config["env_config"] = {"is_slippery": False, "map_name": "4x4"}
|
|
obs = np.array(0)
|
|
|
|
# Test against all frameworks.
|
|
for fw in ["tf", "eager", "torch"]:
|
|
if fw == "torch":
|
|
continue
|
|
|
|
print("framework={}".format(fw))
|
|
|
|
eager_mode_ctx = None
|
|
if fw == "tf":
|
|
assert not tf.executing_eagerly()
|
|
else:
|
|
eager_mode_ctx = eager_mode()
|
|
eager_mode_ctx.__enter__()
|
|
|
|
config["eager"] = fw == "eager"
|
|
config["use_pytorch"] = fw == "torch"
|
|
|
|
# Default EpsilonGreedy setup.
|
|
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
|
|
# Setting explore=False should always return the same action.
|
|
a_ = trainer.compute_action(obs, explore=False)
|
|
for _ in range(50):
|
|
a = trainer.compute_action(obs, explore=False)
|
|
check(a, a_)
|
|
# explore=None (default: explore) should return different actions.
|
|
actions = []
|
|
for _ in range(50):
|
|
actions.append(trainer.compute_action(obs))
|
|
check(np.std(actions), 0.0, false=True)
|
|
|
|
# Low softmax temperature. Behaves like argmax
|
|
# (but no epsilon exploration).
|
|
config["exploration_config"] = {
|
|
"type": "SoftQ",
|
|
"temperature": 0.001
|
|
}
|
|
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
|
|
# Due to the low temp, always expect the same action.
|
|
a_ = trainer.compute_action(obs)
|
|
for _ in range(50):
|
|
a = trainer.compute_action(obs)
|
|
check(a, a_)
|
|
|
|
# Higher softmax temperature.
|
|
config["exploration_config"]["temperature"] = 1.0
|
|
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
|
|
|
|
# Even with the higher temperature, if we set explore=False, we
|
|
# should expect the same actions always.
|
|
a_ = trainer.compute_action(obs, explore=False)
|
|
for _ in range(50):
|
|
a = trainer.compute_action(obs, explore=False)
|
|
check(a, a_)
|
|
|
|
# Due to the higher temp, expect different actions avg'ing
|
|
# around 1.5.
|
|
actions = []
|
|
for _ in range(300):
|
|
actions.append(trainer.compute_action(obs))
|
|
check(np.std(actions), 0.0, false=True)
|
|
|
|
# With Random exploration.
|
|
config["exploration_config"] = {"type": "Random"}
|
|
config["explore"] = True
|
|
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
|
|
actions = []
|
|
for _ in range(300):
|
|
actions.append(trainer.compute_action(obs))
|
|
check(np.std(actions), 0.0, false=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|