ray/rllib/agents/a3c/a3c_torch_policy.py
Matthew A. Wright e3c9f7e83a Custom action distributions (#5164)
* custom action dist wip

* Test case for custom action dist

* ActionDistribution.get_parameter_shape_for_action_space pattern

* Edit exception message to also suggest using a custom action distribution

* Clean up ModelCatalog.get_action_dist

* Pass model config to ActionDistribution constructors

* Update custom action distribution test case

* Name fix

* Autoformatter

* parameter shape static methods for torch distributions

* Fix docstring

* Generalize fake array for graph initialization

* Fix action dist constructors

* Correct parameter shape static methods for multicategorical and gaussian

* Make suggested changes to custom action dist's

* Correct instances of not passing model config to action dist

* Autoformatter

* fix tuple distribution constructor

* bugfix
2019-08-06 11:13:16 -07:00

91 lines
3 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn.functional as F
from torch import nn
import ray
from ray.rllib.evaluation.postprocessing import compute_advantages, \
Postprocessing
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.torch_policy_template import build_torch_policy
def actor_critic_loss(policy, batch_tensors):
logits, _ = policy.model({
SampleBatch.CUR_OBS: batch_tensors[SampleBatch.CUR_OBS]
}) # TODO(ekl) seq lens shouldn't be None
values = policy.model.value_function()
dist = policy.dist_class(logits, policy.config["model"])
log_probs = dist.logp(batch_tensors[SampleBatch.ACTIONS])
policy.entropy = dist.entropy().mean()
policy.pi_err = -batch_tensors[Postprocessing.ADVANTAGES].dot(
log_probs.reshape(-1))
policy.value_err = F.mse_loss(
values.reshape(-1), batch_tensors[Postprocessing.VALUE_TARGETS])
overall_err = sum([
policy.pi_err,
policy.config["vf_loss_coeff"] * policy.value_err,
-policy.config["entropy_coeff"] * policy.entropy,
])
return overall_err
def loss_and_entropy_stats(policy, batch_tensors):
return {
"policy_entropy": policy.entropy.item(),
"policy_loss": policy.pi_err.item(),
"vf_loss": policy.value_err.item(),
}
def add_advantages(policy,
sample_batch,
other_agent_batches=None,
episode=None):
completed = sample_batch[SampleBatch.DONES][-1]
if completed:
last_r = 0.0
else:
last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1])
return compute_advantages(sample_batch, last_r, policy.config["gamma"],
policy.config["lambda"])
def model_value_predictions(policy, input_dict, state_batches, model):
return {SampleBatch.VF_PREDS: model.value_function().cpu().numpy()}
def apply_grad_clipping(policy):
info = {}
if policy.config["grad_clip"]:
total_norm = nn.utils.clip_grad_norm_(policy.model.parameters(),
policy.config["grad_clip"])
info["grad_gnorm"] = total_norm
return info
def torch_optimizer(policy, config):
return torch.optim.Adam(policy.model.parameters(), lr=config["lr"])
class ValueNetworkMixin(object):
def _value(self, obs):
with self.lock:
obs = torch.from_numpy(obs).float().unsqueeze(0).to(self.device)
_ = self.model({"obs": obs}, [], [1])
return self.model.value_function().detach().cpu().numpy().squeeze()
A3CTorchPolicy = build_torch_policy(
name="A3CTorchPolicy",
get_default_config=lambda: ray.rllib.agents.a3c.a3c.DEFAULT_CONFIG,
loss_fn=actor_critic_loss,
stats_fn=loss_and_entropy_stats,
postprocess_fn=add_advantages,
extra_action_out_fn=model_value_predictions,
extra_grad_process_fn=apply_grad_clipping,
optimizer_fn=torch_optimizer,
mixins=[ValueNetworkMixin])