mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00

* Rollback. * WIP. * WIP. * LINT. * WIP. * Fix. * Fix. * Fix. * LINT. * Fix (SAC does currently not support eager). * Fix. * WIP. * LINT. * Update rllib/evaluation/sampler.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * Update rllib/evaluation/sampler.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * Update rllib/utils/exploration/exploration.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * Update rllib/utils/exploration/exploration.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * WIP. * WIP. * Fix. * LINT. * LINT. * Fix and LINT. * WIP. * WIP. * WIP. * WIP. * Fix. * LINT. * Fix. * Fix and LINT. * Update rllib/utils/exploration/exploration.py * Update rllib/policy/dynamic_tf_policy.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * Update rllib/policy/dynamic_tf_policy.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * Update rllib/policy/dynamic_tf_policy.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * Fixes. * LINT. * WIP. Co-authored-by: Eric Liang <ekhliang@gmail.com>
301 lines
9 KiB
Python
301 lines
9 KiB
Python
import collections
|
|
import numpy as np
|
|
|
|
from ray.rllib.utils.annotations import PublicAPI, DeveloperAPI
|
|
from ray.rllib.utils.compression import pack, unpack, is_compressed
|
|
from ray.rllib.utils.memory import concat_aligned
|
|
|
|
# Default policy id for single agent environments
|
|
DEFAULT_POLICY_ID = "default_policy"
|
|
|
|
|
|
@PublicAPI
|
|
class SampleBatch:
|
|
"""Wrapper around a dictionary with string keys and array-like values.
|
|
|
|
For example, {"obs": [1, 2, 3], "reward": [0, -1, 1]} is a batch of three
|
|
samples, each with an "obs" and "reward" attribute.
|
|
"""
|
|
|
|
# Outputs from interacting with the environment
|
|
CUR_OBS = "obs"
|
|
NEXT_OBS = "new_obs"
|
|
ACTIONS = "actions"
|
|
REWARDS = "rewards"
|
|
PREV_ACTIONS = "prev_actions"
|
|
PREV_REWARDS = "prev_rewards"
|
|
DONES = "dones"
|
|
INFOS = "infos"
|
|
|
|
# Extra action fetches keys.
|
|
ACTION_DIST_INPUTS = "action_dist_inputs"
|
|
ACTION_PROB = "action_prob"
|
|
ACTION_LOGP = "action_logp"
|
|
|
|
# Uniquely identifies an episode
|
|
EPS_ID = "eps_id"
|
|
|
|
# Uniquely identifies a sample batch. This is important to distinguish RNN
|
|
# sequences from the same episode when multiple sample batches are
|
|
# concatenated (fusing sequences across batches can be unsafe).
|
|
UNROLL_ID = "unroll_id"
|
|
|
|
# Uniquely identifies an agent within an episode
|
|
AGENT_INDEX = "agent_index"
|
|
|
|
# Value function predictions emitted by the behaviour policy
|
|
VF_PREDS = "vf_preds"
|
|
|
|
@PublicAPI
|
|
def __init__(self, *args, **kwargs):
|
|
"""Constructs a sample batch (same params as dict constructor)."""
|
|
|
|
self.data = dict(*args, **kwargs)
|
|
lengths = []
|
|
for k, v in self.data.copy().items():
|
|
assert isinstance(k, str), self
|
|
lengths.append(len(v))
|
|
self.data[k] = np.array(v, copy=False)
|
|
if not lengths:
|
|
raise ValueError("Empty sample batch")
|
|
assert len(set(lengths)) == 1, ("data columns must be same length",
|
|
self.data, lengths)
|
|
self.count = lengths[0]
|
|
|
|
@staticmethod
|
|
@PublicAPI
|
|
def concat_samples(samples):
|
|
if isinstance(samples[0], MultiAgentBatch):
|
|
return MultiAgentBatch.concat_samples(samples)
|
|
out = {}
|
|
samples = [s for s in samples if s.count > 0]
|
|
for k in samples[0].keys():
|
|
out[k] = concat_aligned([s[k] for s in samples])
|
|
return SampleBatch(out)
|
|
|
|
@PublicAPI
|
|
def concat(self, other):
|
|
"""Returns a new SampleBatch with each data column concatenated.
|
|
|
|
Examples:
|
|
>>> b1 = SampleBatch({"a": [1, 2]})
|
|
>>> b2 = SampleBatch({"a": [3, 4, 5]})
|
|
>>> print(b1.concat(b2))
|
|
{"a": [1, 2, 3, 4, 5]}
|
|
"""
|
|
|
|
assert self.keys() == other.keys(), "must have same columns"
|
|
out = {}
|
|
for k in self.keys():
|
|
out[k] = concat_aligned([self[k], other[k]])
|
|
return SampleBatch(out)
|
|
|
|
@PublicAPI
|
|
def copy(self):
|
|
return SampleBatch(
|
|
{k: np.array(v, copy=True)
|
|
for (k, v) in self.data.items()})
|
|
|
|
@PublicAPI
|
|
def rows(self):
|
|
"""Returns an iterator over data rows, i.e. dicts with column values.
|
|
|
|
Examples:
|
|
>>> batch = SampleBatch({"a": [1, 2, 3], "b": [4, 5, 6]})
|
|
>>> for row in batch.rows():
|
|
print(row)
|
|
{"a": 1, "b": 4}
|
|
{"a": 2, "b": 5}
|
|
{"a": 3, "b": 6}
|
|
"""
|
|
|
|
for i in range(self.count):
|
|
row = {}
|
|
for k in self.keys():
|
|
row[k] = self[k][i]
|
|
yield row
|
|
|
|
@PublicAPI
|
|
def columns(self, keys):
|
|
"""Returns a list of just the specified columns.
|
|
|
|
Examples:
|
|
>>> batch = SampleBatch({"a": [1], "b": [2], "c": [3]})
|
|
>>> print(batch.columns(["a", "b"]))
|
|
[[1], [2]]
|
|
"""
|
|
|
|
out = []
|
|
for k in keys:
|
|
out.append(self[k])
|
|
return out
|
|
|
|
@PublicAPI
|
|
def shuffle(self):
|
|
"""Shuffles the rows of this batch in-place."""
|
|
|
|
permutation = np.random.permutation(self.count)
|
|
for key, val in self.items():
|
|
self[key] = val[permutation]
|
|
|
|
@PublicAPI
|
|
def split_by_episode(self):
|
|
"""Splits this batch's data by `eps_id`.
|
|
|
|
Returns:
|
|
list of SampleBatch, one per distinct episode.
|
|
"""
|
|
|
|
slices = []
|
|
cur_eps_id = self.data["eps_id"][0]
|
|
offset = 0
|
|
for i in range(self.count):
|
|
next_eps_id = self.data["eps_id"][i]
|
|
if next_eps_id != cur_eps_id:
|
|
slices.append(self.slice(offset, i))
|
|
offset = i
|
|
cur_eps_id = next_eps_id
|
|
slices.append(self.slice(offset, self.count))
|
|
for s in slices:
|
|
slen = len(set(s["eps_id"]))
|
|
assert slen == 1, (s, slen)
|
|
assert sum(s.count for s in slices) == self.count, (slices, self.count)
|
|
return slices
|
|
|
|
@PublicAPI
|
|
def slice(self, start, end):
|
|
"""Returns a slice of the row data of this batch.
|
|
|
|
Arguments:
|
|
start (int): Starting index.
|
|
end (int): Ending index.
|
|
|
|
Returns:
|
|
SampleBatch which has a slice of this batch's data.
|
|
"""
|
|
|
|
return SampleBatch({k: v[start:end] for k, v in self.data.items()})
|
|
|
|
@PublicAPI
|
|
def keys(self):
|
|
return self.data.keys()
|
|
|
|
@PublicAPI
|
|
def items(self):
|
|
return self.data.items()
|
|
|
|
@PublicAPI
|
|
def get(self, key):
|
|
return self.data.get(key)
|
|
|
|
@PublicAPI
|
|
def __getitem__(self, key):
|
|
return self.data[key]
|
|
|
|
@PublicAPI
|
|
def __setitem__(self, key, item):
|
|
self.data[key] = item
|
|
|
|
@DeveloperAPI
|
|
def compress(self, bulk=False, columns=frozenset(["obs", "new_obs"])):
|
|
for key in columns:
|
|
if key in self.data:
|
|
if bulk:
|
|
self.data[key] = pack(self.data[key])
|
|
else:
|
|
self.data[key] = np.array(
|
|
[pack(o) for o in self.data[key]])
|
|
|
|
@DeveloperAPI
|
|
def decompress_if_needed(self, columns=frozenset(["obs", "new_obs"])):
|
|
for key in columns:
|
|
if key in self.data:
|
|
arr = self.data[key]
|
|
if is_compressed(arr):
|
|
self.data[key] = unpack(arr)
|
|
elif len(arr) > 0 and is_compressed(arr[0]):
|
|
self.data[key] = np.array(
|
|
[unpack(o) for o in self.data[key]])
|
|
|
|
def __str__(self):
|
|
return "SampleBatch({})".format(str(self.data))
|
|
|
|
def __repr__(self):
|
|
return "SampleBatch({})".format(str(self.data))
|
|
|
|
def __iter__(self):
|
|
return self.data.__iter__()
|
|
|
|
def __contains__(self, x):
|
|
return x in self.data
|
|
|
|
|
|
@PublicAPI
|
|
class MultiAgentBatch:
|
|
"""A batch of experiences from multiple policies in the environment.
|
|
|
|
Attributes:
|
|
policy_batches (dict): Mapping from policy id to a normal SampleBatch
|
|
of experiences. Note that these batches may be of different length.
|
|
count (int): The number of timesteps in the environment this batch
|
|
contains. This will be less than the number of transitions this
|
|
batch contains across all policies in total.
|
|
"""
|
|
|
|
@PublicAPI
|
|
def __init__(self, policy_batches, count):
|
|
self.policy_batches = policy_batches
|
|
self.count = count
|
|
|
|
@staticmethod
|
|
@PublicAPI
|
|
def wrap_as_needed(batches, count):
|
|
if len(batches) == 1 and DEFAULT_POLICY_ID in batches:
|
|
return batches[DEFAULT_POLICY_ID]
|
|
return MultiAgentBatch(batches, count)
|
|
|
|
@staticmethod
|
|
@PublicAPI
|
|
def concat_samples(samples):
|
|
policy_batches = collections.defaultdict(list)
|
|
total_count = 0
|
|
for s in samples:
|
|
assert isinstance(s, MultiAgentBatch)
|
|
for policy_id, batch in s.policy_batches.items():
|
|
policy_batches[policy_id].append(batch)
|
|
total_count += s.count
|
|
out = {}
|
|
for policy_id, batches in policy_batches.items():
|
|
out[policy_id] = SampleBatch.concat_samples(batches)
|
|
return MultiAgentBatch(out, total_count)
|
|
|
|
@PublicAPI
|
|
def copy(self):
|
|
return MultiAgentBatch(
|
|
{k: v.copy()
|
|
for (k, v) in self.policy_batches.items()}, self.count)
|
|
|
|
@PublicAPI
|
|
def total(self):
|
|
ct = 0
|
|
for batch in self.policy_batches.values():
|
|
ct += batch.count
|
|
return ct
|
|
|
|
@DeveloperAPI
|
|
def compress(self, bulk=False, columns=frozenset(["obs", "new_obs"])):
|
|
for batch in self.policy_batches.values():
|
|
batch.compress(bulk=bulk, columns=columns)
|
|
|
|
@DeveloperAPI
|
|
def decompress_if_needed(self, columns=frozenset(["obs", "new_obs"])):
|
|
for batch in self.policy_batches.values():
|
|
batch.decompress_if_needed(columns)
|
|
|
|
def __str__(self):
|
|
return "MultiAgentBatch({}, count={})".format(
|
|
str(self.policy_batches), self.count)
|
|
|
|
def __repr__(self):
|
|
return "MultiAgentBatch({}, count={})".format(
|
|
str(self.policy_batches), self.count)
|