ray/docker/ray-ml/Dockerfile

48 lines
1.8 KiB
Docker

ARG BASE_IMAGE
FROM rayproject/ray:nightly"$BASE_IMAGE"
ARG PYTHON_MINOR_VERSION=7
# We have to uninstall wrapt this way for Tensorflow compatibility
COPY requirements.txt ./
COPY requirements_dl.txt ./
COPY requirements_ml_docker.txt ./
COPY requirements_rllib.txt ./
COPY requirements_tune.txt ./requirements_tune.txt
COPY requirements_train.txt ./
COPY requirements_upstream.txt ./
RUN sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub
RUN sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub
RUN sudo apt-get update \
&& sudo apt-get install -y gcc \
cmake \
libgtk2.0-dev \
zlib1g-dev \
libgl1-mesa-dev \
unzip \
unrar \
&& $HOME/anaconda3/bin/pip --no-cache-dir install -U pip \
&& $HOME/anaconda3/bin/pip --no-cache-dir install -U \
-r requirements.txt \
-r requirements_rllib.txt \
-r requirements_train.txt \
-r requirements_tune.txt \
-r requirements_upstream.txt \
# explicitly install (overwrite) pytorch with CUDA support
&& $HOME/anaconda3/bin/pip --no-cache-dir install -U \
-r requirements_ml_docker.txt \
# Remove dataclasses & typing because they are included in Python > 3.6
&& if [ $(python -c 'import sys; print(sys.version_info.minor)') != "6" ]; then \
$HOME/anaconda3/bin/pip uninstall dataclasses typing -y; fi \
&& sudo rm \
requirements.txt \
requirements_ml_docker.txt \
requirements_tune.txt \
requirements_rllib.txt \
requirements_train.txt \
requirements_upstream.txt \
&& sudo apt-get clean
# Make sure tfp is installed correctly and matches tf version.
RUN python -c "import tensorflow_probability"