ray/test/stress_tests.py
Alexey Tumanov dfb6107b22 General attribute-based heterogeneity support with hard and soft constraints (#248)
* attribute-based heterogeneity-awareness in global scheduler and photon

* minor post-rebase fix

* photon: enforce dynamic capacity constraint on task dispatch

* globalsched: cap the number of times we try to schedule a task in round robin

* propagating ability to specify resource capacity to ray.init

* adding resources to remote function export and fetch/register

* globalsched: remove unused functions; update cached photon resource capacity (until next photon heartbeat)

* Add some integration tests.

* globalsched: cleanup + factor out constraint checking

* lots of style

* task_spec_required_resource: global refactor

* clang format

* clang format + comment update in photon

* clang format photon comment

* valgrind

* reduce verbosity for Travis

* Add test for scheduler load balancing.

* addressing comments

* refactoring global scheduler algorithm

* Minor cleanups.

* Linting.

* Fix array_test.py and linting.

* valgrind fix for photon tests

* Attempt to fix stress tests.

* fix hashmap free

* fix hashmap free comment

* memset photon resource vectors to 0 in case they get used before the first heartbeat

* More whitespace changes.

* Undo whitespace error I introduced.
2017-02-09 01:34:14 -08:00

302 lines
9.3 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import ray
import numpy as np
import time
import redis
class TaskTests(unittest.TestCase):
def testSubmittingTasks(self):
for num_local_schedulers in [1, 4]:
for num_workers_per_scheduler in [4]:
num_workers = num_local_schedulers * num_workers_per_scheduler
ray.worker._init(start_ray_local=True, num_workers=num_workers,
num_local_schedulers=num_local_schedulers,
num_cpus=100)
@ray.remote
def f(x):
return x
for _ in range(1):
ray.get([f.remote(1) for _ in range(1000)])
for _ in range(10):
ray.get([f.remote(1) for _ in range(100)])
for _ in range(100):
ray.get([f.remote(1) for _ in range(10)])
for _ in range(1000):
ray.get([f.remote(1) for _ in range(1)])
self.assertTrue(ray.services.all_processes_alive())
ray.worker.cleanup()
def testDependencies(self):
for num_local_schedulers in [1, 4]:
for num_workers_per_scheduler in [4]:
num_workers = num_local_schedulers * num_workers_per_scheduler
ray.worker._init(start_ray_local=True, num_workers=num_workers,
num_local_schedulers=num_local_schedulers,
num_cpus=100)
@ray.remote
def f(x):
return x
x = 1
for _ in range(1000):
x = f.remote(x)
ray.get(x)
@ray.remote
def g(*xs):
return 1
xs = [g.remote(1)]
for _ in range(100):
xs.append(g.remote(*xs))
xs.append(g.remote(1))
ray.get(xs)
self.assertTrue(ray.services.all_processes_alive())
ray.worker.cleanup()
def testGettingAndPutting(self):
ray.init(num_workers=1)
for n in range(8):
x = np.zeros(10 ** n)
for _ in range(100):
ray.put(x)
x_id = ray.put(x)
for _ in range(1000):
ray.get(x_id)
self.assertTrue(ray.services.all_processes_alive())
ray.worker.cleanup()
def testGettingManyObjects(self):
ray.init()
@ray.remote
def f():
return 1
n = 10 ** 4 # TODO(pcm): replace by 10 ** 5 once this is faster
l = ray.get([f.remote() for _ in range(n)])
self.assertEqual(l, n * [1])
ray.worker.cleanup()
def testWait(self):
for num_local_schedulers in [1, 4]:
for num_workers_per_scheduler in [4]:
num_workers = num_local_schedulers * num_workers_per_scheduler
ray.worker._init(start_ray_local=True, num_workers=num_workers,
num_local_schedulers=num_local_schedulers,
num_cpus=100)
@ray.remote
def f(x):
return x
x_ids = [f.remote(i) for i in range(100)]
for i in range(len(x_ids)):
ray.wait([x_ids[i]])
for i in range(len(x_ids) - 1):
ray.wait(x_ids[i:])
@ray.remote
def g(x):
time.sleep(x)
for i in range(1, 5):
x_ids = [g.remote(np.random.uniform(0, i)) for _ in range(2 * num_workers)]
ray.wait(x_ids, num_returns=len(x_ids))
self.assertTrue(ray.services.all_processes_alive())
ray.worker.cleanup()
class ReconstructionTests(unittest.TestCase):
num_local_schedulers = 1
def setUp(self):
# Start a Redis instance and Plasma store instances with a total of 1GB
# memory.
node_ip_address = "127.0.0.1"
self.redis_port = ray.services.new_port()
print(self.redis_port)
redis_address = ray.services.address(node_ip_address, self.redis_port)
self.plasma_store_memory = 10 ** 9
plasma_addresses = []
objstore_memory = (self.plasma_store_memory // self.num_local_schedulers)
for i in range(self.num_local_schedulers):
plasma_addresses.append(
ray.services.start_objstore(node_ip_address, redis_address,
objstore_memory=objstore_memory)
)
address_info = {
"redis_address": redis_address,
"object_store_addresses": plasma_addresses,
}
# Start the rest of the services in the Ray cluster.
ray.worker._init(address_info=address_info, start_ray_local=True,
num_workers=self.num_local_schedulers,
num_local_schedulers=self.num_local_schedulers,
num_cpus=100)
def tearDown(self):
self.assertTrue(ray.services.all_processes_alive())
# Make sure that all nodes in the cluster were used by checking where tasks
# were scheduled and/or submitted from.
r = redis.StrictRedis(port=self.redis_port)
task_ids = r.keys("TT:*")
task_ids = [task_id[3:] for task_id in task_ids]
node_ids = [r.execute_command("ray.task_table_get", task_id)[1] for task_id
in task_ids]
self.assertEqual(len(set(node_ids)), self.num_local_schedulers)
# Clean up the Ray cluster.
ray.worker.cleanup()
def testSimple(self):
# Define the size of one task's return argument so that the combined sum of
# all objects' sizes is at least twice the plasma stores' combined allotted
# memory.
num_objects = 1000
size = self.plasma_store_memory * 2 // (num_objects * 8)
# Define a remote task with no dependencies, which returns a numpy array of
# the given size.
@ray.remote
def foo(i, size):
array = np.zeros(size)
array[0] = i
return array
# Launch num_objects instances of the remote task.
args = []
for i in range(num_objects):
args.append(foo.remote(i, size))
# Get each value to force each task to finish. After some number of gets,
# old values should be evicted.
for i in range(num_objects):
value = ray.get(args[i])
self.assertEqual(value[0], i)
# Get each value again to force reconstruction.
for i in range(num_objects):
value = ray.get(args[i])
self.assertEqual(value[0], i)
def testRecursive(self):
# Define the size of one task's return argument so that the combined sum of
# all objects' sizes is at least twice the plasma stores' combined allotted
# memory.
num_objects = 1000
size = self.plasma_store_memory * 2 // (num_objects * 8)
# Define a root task with no dependencies, which returns a numpy array of
# the given size.
@ray.remote
def no_dependency_task(size):
array = np.zeros(size)
return array
# Define a task with a single dependency, which returns its one argument.
@ray.remote
def single_dependency(i, arg):
arg = np.copy(arg)
arg[0] = i
return arg
# Launch num_objects instances of the remote task, each dependent on the
# one before it.
arg = no_dependency_task.remote(size)
args = []
for i in range(num_objects):
arg = single_dependency.remote(i, arg)
args.append(arg)
# Get each value to force each task to finish. After some number of gets,
# old values should be evicted.
for i in range(num_objects):
value = ray.get(args[i])
self.assertEqual(value[0], i)
# Get each value again to force reconstruction.
for i in range(num_objects):
value = ray.get(args[i])
self.assertEqual(value[0], i)
# Get 10 values randomly.
for _ in range(10):
i = np.random.randint(num_objects)
value = ray.get(args[i])
self.assertEqual(value[0], i)
def testMultipleRecursive(self):
# Define the size of one task's return argument so that the combined sum of
# all objects' sizes is at least twice the plasma stores' combined allotted
# memory.
num_objects = 1000
size = self.plasma_store_memory * 2 // (num_objects * 8)
# Define a root task with no dependencies, which returns a numpy array of
# the given size.
@ray.remote
def no_dependency_task(size):
array = np.zeros(size)
return array
# Define a task with multiple dependencies, which returns its first
# argument.
@ray.remote
def multiple_dependency(i, arg1, arg2, arg3):
arg1 = np.copy(arg1)
arg1[0] = i
return arg1
# Launch num_args instances of the root task. Then launch num_objects
# instances of the multi-dependency remote task, each dependent on the
# num_args tasks before it.
num_args = 3
args = []
for i in range(num_args):
arg = no_dependency_task.remote(size)
args.append(arg)
for i in range(num_objects):
args.append(multiple_dependency.remote(i, *args[i:i + num_args]))
# Get each value to force each task to finish. After some number of gets,
# old values should be evicted.
args = args[num_args:]
for i in range(num_objects):
value = ray.get(args[i])
self.assertEqual(value[0], i)
# Get each value again to force reconstruction.
for i in range(num_objects):
value = ray.get(args[i])
self.assertEqual(value[0], i)
# Get 10 values randomly.
for _ in range(10):
i = np.random.randint(num_objects)
value = ray.get(args[i])
self.assertEqual(value[0], i)
class ReconstructionTestsMultinode(ReconstructionTests):
# Run the same tests as the single-node suite, but with 4 local schedulers,
# one worker each.
num_local_schedulers = 4
if __name__ == "__main__":
unittest.main(verbosity=2)