mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
192 lines
6 KiB
Python
192 lines
6 KiB
Python
"""Using an RLlib-ready RecSim environment and the SlateQ algorithm
|
|
for solving recommendation system problems.
|
|
|
|
This example supports three different RecSim (RLlib-ready) environments,
|
|
configured via the --env option:
|
|
- "long-term-satisfaction"
|
|
- "interest-exploration"
|
|
- "interest-evolution"
|
|
"""
|
|
|
|
import argparse
|
|
import numpy as np
|
|
from scipy.stats import sem
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.algorithms import slateq
|
|
from ray.rllib.algorithms import dqn
|
|
from ray.rllib.examples.env.recommender_system_envs_with_recsim import (
|
|
InterestEvolutionRecSimEnv,
|
|
InterestExplorationRecSimEnv,
|
|
LongTermSatisfactionRecSimEnv,
|
|
)
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
from ray.tune.logger import pretty_print
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--run",
|
|
type=str,
|
|
default="SlateQ",
|
|
choices=["SlateQ", "DQN"],
|
|
help=("Select agent policy. Choose from: DQN and SlateQ. Default value: SlateQ."),
|
|
)
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.",
|
|
)
|
|
parser.add_argument(
|
|
"--env",
|
|
type=str,
|
|
default="interest-evolution",
|
|
choices=["interest-evolution", "interest-exploration", "long-term-satisfaction"],
|
|
help=("Select the RecSim env to use."),
|
|
)
|
|
parser.add_argument("--learning-starts", type=int, default=20000)
|
|
parser.add_argument(
|
|
"--random-test-episodes",
|
|
type=int,
|
|
default=0,
|
|
help="The number of test episodes to run with a random agent to figure out "
|
|
"up front what the random baseline reward is.",
|
|
)
|
|
parser.add_argument(
|
|
"--use-tune",
|
|
action="store_true",
|
|
help=(
|
|
"Run with Tune so that the results are logged into Tensorboard. "
|
|
"For debugging, it's easier to run without Ray Tune."
|
|
),
|
|
)
|
|
parser.add_argument("--tune-num-samples", type=int, default=1)
|
|
|
|
parser.add_argument(
|
|
"--env-num-candidates",
|
|
type=int,
|
|
default=100,
|
|
help="The number of candidates that the agent has to pick "
|
|
"`--env-slate-size` from each timestep. These candidates will be "
|
|
"sampled by the environment's built-in document sampler model.",
|
|
)
|
|
parser.add_argument(
|
|
"--env-slate-size",
|
|
type=int,
|
|
default=2,
|
|
help="The size of the slate to recommend (from out of "
|
|
"`--env-num-candidates` sampled docs) each timestep.",
|
|
)
|
|
parser.add_argument(
|
|
"--env-dont-resample-documents",
|
|
action="store_true",
|
|
help="Whether to NOT resample `--env-num-candidates` docs "
|
|
"each timestep. If set, the env will only sample `--env-num-candidates`"
|
|
" once at the beginning and the agent always has to pick "
|
|
"`--env-slate-size` docs from this sample.",
|
|
)
|
|
parser.add_argument("--env-seed", type=int, default=0)
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
parser.add_argument("--num-gpus", type=float, default=0)
|
|
parser.add_argument("--num-workers", type=int, default=0)
|
|
|
|
parser.add_argument(
|
|
"--local-mode",
|
|
action="store_true",
|
|
help="Init Ray in local mode for easier debugging.",
|
|
)
|
|
parser.add_argument("--as-test", action="store_true")
|
|
parser.add_argument("--stop-iters", type=int, default=200)
|
|
parser.add_argument("--stop-reward", type=float, default=160.0)
|
|
parser.add_argument("--stop-timesteps", type=int, default=150000)
|
|
|
|
|
|
def main():
|
|
args = parser.parse_args()
|
|
ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode)
|
|
|
|
env_config = {
|
|
"num_candidates": args.env_num_candidates,
|
|
"resample_documents": not args.env_dont_resample_documents,
|
|
"slate_size": args.env_slate_size,
|
|
"seed": args.env_seed,
|
|
"convert_to_discrete_action_space": args.run == "DQN",
|
|
}
|
|
|
|
config = {
|
|
"env": (
|
|
InterestEvolutionRecSimEnv
|
|
if args.env == "interest-evolution"
|
|
else InterestExplorationRecSimEnv
|
|
if args.env == "interest-exploration"
|
|
else LongTermSatisfactionRecSimEnv
|
|
),
|
|
"framework": args.framework,
|
|
"num_gpus": args.num_gpus,
|
|
"num_workers": args.num_workers,
|
|
"env_config": env_config,
|
|
"replay_buffer_config": {
|
|
"learning_starts": args.learning_starts,
|
|
},
|
|
}
|
|
|
|
# Perform a test run on the env with a random agent to see, what
|
|
# the random baseline reward is.
|
|
if args.random_test_episodes:
|
|
print(
|
|
f"Running {args.random_test_episodes} episodes to get a random "
|
|
"agent's baseline reward ..."
|
|
)
|
|
env = config["env"](config=env_config)
|
|
env.reset()
|
|
num_episodes = 0
|
|
episode_rewards = []
|
|
episode_reward = 0.0
|
|
while num_episodes < args.random_test_episodes:
|
|
action = env.action_space.sample()
|
|
_, r, d, _ = env.step(action)
|
|
episode_reward += r
|
|
if d:
|
|
num_episodes += 1
|
|
episode_rewards.append(episode_reward)
|
|
episode_reward = 0.0
|
|
env.reset()
|
|
print(
|
|
f"Ran {args.random_test_episodes} episodes with a random agent "
|
|
"reaching a mean episode return of "
|
|
f"{np.mean(episode_rewards)}+/-{sem(episode_rewards)}."
|
|
)
|
|
|
|
if args.use_tune:
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
results = tune.run(
|
|
args.run,
|
|
stop=stop,
|
|
config=config,
|
|
num_samples=args.tune_num_samples,
|
|
verbose=2,
|
|
)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
else:
|
|
# Directly run using the trainer interface (good for debugging).
|
|
if args.run == "DQN":
|
|
trainer = dqn.DQN(config=config)
|
|
else:
|
|
trainer = slateq.SlateQ(config=config)
|
|
for i in range(10):
|
|
result = trainer.train()
|
|
print(pretty_print(result))
|
|
ray.shutdown()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|