ray/rllib/examples/custom_rnn_model.py

118 lines
3.7 KiB
Python

"""Example of using a custom RNN keras model."""
import argparse
import os
import ray
from ray import tune
from ray.tune.registry import register_env
from ray.rllib.examples.env.repeat_after_me_env import RepeatAfterMeEnv
from ray.rllib.examples.env.repeat_initial_obs_env import RepeatInitialObsEnv
from ray.rllib.examples.models.rnn_model import RNNModel, TorchRNNModel
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.test_utils import check_learning_achieved
parser = argparse.ArgumentParser()
parser.add_argument(
"--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
)
parser.add_argument("--env", type=str, default="RepeatAfterMeEnv")
parser.add_argument("--num-cpus", type=int, default=0)
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.",
)
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.",
)
parser.add_argument(
"--stop-iters", type=int, default=100, help="Number of iterations to train."
)
parser.add_argument(
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
)
parser.add_argument(
"--stop-reward", type=float, default=90.0, help="Reward at which we stop training."
)
parser.add_argument(
"--local-mode",
action="store_true",
help="Init Ray in local mode for easier debugging.",
)
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode)
ModelCatalog.register_custom_model(
"rnn", TorchRNNModel if args.framework == "torch" else RNNModel
)
register_env("RepeatAfterMeEnv", lambda c: RepeatAfterMeEnv(c))
register_env("RepeatInitialObsEnv", lambda _: RepeatInitialObsEnv())
config = {
"env": args.env,
"env_config": {
"repeat_delay": 2,
},
"gamma": 0.9,
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"num_workers": 0,
"num_envs_per_worker": 20,
"entropy_coeff": 0.001,
"num_sgd_iter": 5,
"vf_loss_coeff": 1e-5,
"model": {
"custom_model": "rnn",
"max_seq_len": 20,
"custom_model_config": {
"cell_size": 32,
},
},
"framework": args.framework,
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
# To run the Algorithm without tune.run, using our RNN model and
# manual state-in handling, do the following:
# Example (use `config` from the above code):
# >> import numpy as np
# >> from ray.rllib.algorithms.ppo import PPO
# >>
# >> algo = PPO(config)
# >> lstm_cell_size = config["model"]["custom_model_config"]["cell_size"]
# >> env = RepeatAfterMeEnv({})
# >> obs = env.reset()
# >>
# >> # range(2) b/c h- and c-states of the LSTM.
# >> init_state = state = [
# .. np.zeros([lstm_cell_size], np.float32) for _ in range(2)
# .. ]
# >>
# >> while True:
# >> a, state_out, _ = algo.compute_single_action(obs, state)
# >> obs, reward, done, _ = env.step(a)
# >> if done:
# >> obs = env.reset()
# >> state = init_state
# >> else:
# >> state = state_out
results = tune.run(args.run, config=config, stop=stop, verbose=1)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()