ray/rllib/utils/replay_buffers/replay_buffer.py
2022-02-09 15:04:43 +01:00

195 lines
6.8 KiB
Python

import logging
import platform
from typing import Any, Dict, List, Optional
import numpy as np
import random
# Import ray before psutil will make sure we use psutil's bundled version
import ray # noqa F401
import psutil # noqa E402
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.annotations import ExperimentalAPI
from ray.rllib.utils.metrics.window_stat import WindowStat
from ray.rllib.utils.typing import SampleBatchType
from ray.rllib.execution.buffers.replay_buffer import warn_replay_capacity
logger = logging.getLogger(__name__)
@ExperimentalAPI
class ReplayBuffer:
def __init__(
self, capacity: int = 10000, storage_unit: str = "timesteps", **kwargs
):
"""Initializes a ReplayBuffer instance.
Args:
capacity: Max number of timesteps to store in the FIFO
buffer. After reaching this number, older samples will be
dropped to make space for new ones.
storage_unit: Either 'sequences' or 'timesteps'. Specifies how
experiences are stored.
**kwargs: Forward compatibility kwargs.
"""
if storage_unit == "timesteps":
self._store_as_sequences = False
elif storage_unit == "sequences":
self._store_as_sequences = True
else:
raise ValueError("storage_unit must be either 'sequences' or 'timestamps'")
# The actual storage (list of SampleBatches).
self._storage = []
self.capacity = capacity
# The next index to override in the buffer.
self._next_idx = 0
self._hit_count = np.zeros(self.capacity)
# Whether we have already hit our capacity (and have therefore
# started to evict older samples).
self._eviction_started = False
# Number of (single) timesteps that have been added to the buffer
# over its lifetime. Note that each added item (batch) may contain
# more than one timestep.
self._num_timesteps_added = 0
self._num_timesteps_added_wrap = 0
# Number of (single) timesteps that have been sampled from the buffer
# over its lifetime.
self._num_timesteps_sampled = 0
self._evicted_hit_stats = WindowStat("evicted_hit", 1000)
self._est_size_bytes = 0
def __len__(self) -> int:
"""Returns the number of items currently stored in this buffer."""
return len(self._storage)
@ExperimentalAPI
def add(self, batch: SampleBatchType, **kwargs) -> None:
"""Adds a batch of experiences.
Args:
batch: SampleBatch to add to this buffer's storage.
**kwargs: Forward compatibility kwargs.
"""
assert batch.count > 0, batch
warn_replay_capacity(item=batch, num_items=self.capacity / batch.count)
# Update our timesteps counts.
self._num_timesteps_added += batch.count
self._num_timesteps_added_wrap += batch.count
if self._next_idx >= len(self._storage):
self._storage.append(batch)
self._est_size_bytes += batch.size_bytes()
else:
self._storage[self._next_idx] = batch
# Wrap around storage as a circular buffer once we hit capacity.
if self._num_timesteps_added_wrap >= self.capacity:
self._eviction_started = True
self._num_timesteps_added_wrap = 0
self._next_idx = 0
else:
self._next_idx += 1
# Eviction of older samples has already started (buffer is "full").
if self._eviction_started:
self._evicted_hit_stats.push(self._hit_count[self._next_idx])
self._hit_count[self._next_idx] = 0
@ExperimentalAPI
def sample(self, num_items: int, **kwargs) -> Optional[SampleBatchType]:
"""Samples a batch of size `num_items` from this buffer.
If less than `num_items` records are in this buffer, some samples in
the results may be repeated to fulfil the batch size (`num_items`)
request.
Args:
num_items: Number of items to sample from this buffer.
**kwargs: Forward compatibility kwargs.
Returns:
Concatenated batch of items. None if buffer is empty.
"""
# If we don't have any samples yet in this buffer, return None.
if len(self) == 0:
return None
idxes = [random.randint(0, len(self) - 1) for _ in range(num_items)]
sample = self._encode_sample(idxes)
# Update our timesteps counters.
self._num_timesteps_sampled += len(sample)
return sample
@ExperimentalAPI
def stats(self, debug: bool = False) -> dict:
"""Returns the stats of this buffer.
Args:
debug: If True, adds sample eviction statistics to the returned
stats dict.
Returns:
A dictionary of stats about this buffer.
"""
data = {
"added_count": self._num_timesteps_added,
"added_count_wrapped": self._num_timesteps_added_wrap,
"eviction_started": self._eviction_started,
"sampled_count": self._num_timesteps_sampled,
"est_size_bytes": self._est_size_bytes,
"num_entries": len(self._storage),
}
if debug:
data.update(self._evicted_hit_stats.stats())
return data
@ExperimentalAPI
def get_state(self) -> Dict[str, Any]:
"""Returns all local state.
Returns:
The serializable local state.
"""
state = {"_storage": self._storage, "_next_idx": self._next_idx}
state.update(self.stats(debug=False))
return state
@ExperimentalAPI
def set_state(self, state: Dict[str, Any]) -> None:
"""Restores all local state to the provided `state`.
Args:
state: The new state to set this buffer. Can be
obtained by calling `self.get_state()`.
"""
# The actual storage.
self._storage = state["_storage"]
self._next_idx = state["_next_idx"]
# Stats and counts.
self._num_timesteps_added = state["added_count"]
self._num_timesteps_added_wrap = state["added_count_wrapped"]
self._eviction_started = state["eviction_started"]
self._num_timesteps_sampled = state["sampled_count"]
self._est_size_bytes = state["est_size_bytes"]
def _encode_sample(self, idxes: List[int]) -> SampleBatchType:
out = SampleBatch.concat_samples([self._storage[i] for i in idxes])
out.decompress_if_needed()
return out
def get_host(self) -> str:
"""Returns the computer's network name.
Returns:
The computer's networks name or an empty string, if the network
name could not be determined.
"""
return platform.node()