mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
267 lines
9.8 KiB
Python
267 lines
9.8 KiB
Python
"""
|
|
PyTorch policy class used for PPO.
|
|
"""
|
|
import gym
|
|
import logging
|
|
from typing import Dict, List, Type, Union
|
|
|
|
import ray
|
|
from ray.rllib.agents.ppo.ppo_tf_policy import setup_config
|
|
from ray.rllib.evaluation.postprocessing import compute_gae_for_sample_batch, \
|
|
Postprocessing
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.models.torch.torch_action_dist import TorchDistributionWrapper
|
|
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.policy.policy_template import build_policy_class
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.torch_policy import EntropyCoeffSchedule, \
|
|
LearningRateSchedule
|
|
from ray.rllib.utils.framework import try_import_torch
|
|
from ray.rllib.utils.torch_ops import apply_grad_clipping, \
|
|
explained_variance, sequence_mask
|
|
from ray.rllib.utils.typing import TensorType, TrainerConfigDict
|
|
|
|
torch, nn = try_import_torch()
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def ppo_surrogate_loss(
|
|
policy: Policy, model: ModelV2,
|
|
dist_class: Type[TorchDistributionWrapper],
|
|
train_batch: SampleBatch) -> Union[TensorType, List[TensorType]]:
|
|
"""Constructs the loss for Proximal Policy Objective.
|
|
|
|
Args:
|
|
policy (Policy): The Policy to calculate the loss for.
|
|
model (ModelV2): The Model to calculate the loss for.
|
|
dist_class (Type[ActionDistribution]: The action distr. class.
|
|
train_batch (SampleBatch): The training data.
|
|
|
|
Returns:
|
|
Union[TensorType, List[TensorType]]: A single loss tensor or a list
|
|
of loss tensors.
|
|
"""
|
|
logits, state = model(train_batch)
|
|
curr_action_dist = dist_class(logits, model)
|
|
|
|
# RNN case: Mask away 0-padded chunks at end of time axis.
|
|
if state:
|
|
B = len(train_batch["seq_lens"])
|
|
max_seq_len = logits.shape[0] // B
|
|
mask = sequence_mask(
|
|
train_batch["seq_lens"],
|
|
max_seq_len,
|
|
time_major=model.is_time_major())
|
|
mask = torch.reshape(mask, [-1])
|
|
num_valid = torch.sum(mask)
|
|
|
|
def reduce_mean_valid(t):
|
|
return torch.sum(t[mask]) / num_valid
|
|
|
|
# non-RNN case: No masking.
|
|
else:
|
|
mask = None
|
|
reduce_mean_valid = torch.mean
|
|
|
|
prev_action_dist = dist_class(train_batch[SampleBatch.ACTION_DIST_INPUTS],
|
|
model)
|
|
|
|
logp_ratio = torch.exp(
|
|
curr_action_dist.logp(train_batch[SampleBatch.ACTIONS]) -
|
|
train_batch[SampleBatch.ACTION_LOGP])
|
|
action_kl = prev_action_dist.kl(curr_action_dist)
|
|
mean_kl = reduce_mean_valid(action_kl)
|
|
|
|
curr_entropy = curr_action_dist.entropy()
|
|
mean_entropy = reduce_mean_valid(curr_entropy)
|
|
|
|
surrogate_loss = torch.min(
|
|
train_batch[Postprocessing.ADVANTAGES] * logp_ratio,
|
|
train_batch[Postprocessing.ADVANTAGES] * torch.clamp(
|
|
logp_ratio, 1 - policy.config["clip_param"],
|
|
1 + policy.config["clip_param"]))
|
|
mean_policy_loss = reduce_mean_valid(-surrogate_loss)
|
|
|
|
# Compute a value function loss.
|
|
if policy.config["use_critic"]:
|
|
prev_value_fn_out = train_batch[SampleBatch.VF_PREDS]
|
|
value_fn_out = model.value_function()
|
|
vf_loss1 = torch.pow(
|
|
value_fn_out - train_batch[Postprocessing.VALUE_TARGETS], 2.0)
|
|
vf_clipped = prev_value_fn_out + torch.clamp(
|
|
value_fn_out - prev_value_fn_out, -policy.config["vf_clip_param"],
|
|
policy.config["vf_clip_param"])
|
|
vf_loss2 = torch.pow(
|
|
vf_clipped - train_batch[Postprocessing.VALUE_TARGETS], 2.0)
|
|
vf_loss = torch.max(vf_loss1, vf_loss2)
|
|
mean_vf_loss = reduce_mean_valid(vf_loss)
|
|
# Ignore the value function.
|
|
else:
|
|
vf_loss = mean_vf_loss = 0.0
|
|
|
|
total_loss = reduce_mean_valid(-surrogate_loss +
|
|
policy.kl_coeff * action_kl +
|
|
policy.config["vf_loss_coeff"] * vf_loss -
|
|
policy.entropy_coeff * curr_entropy)
|
|
|
|
# Store stats in policy for stats_fn.
|
|
policy._total_loss = total_loss
|
|
policy._mean_policy_loss = mean_policy_loss
|
|
policy._mean_vf_loss = mean_vf_loss
|
|
policy._vf_explained_var = explained_variance(
|
|
train_batch[Postprocessing.VALUE_TARGETS], model.value_function())
|
|
policy._mean_entropy = mean_entropy
|
|
policy._mean_kl = mean_kl
|
|
|
|
return total_loss
|
|
|
|
|
|
def kl_and_loss_stats(policy: Policy,
|
|
train_batch: SampleBatch) -> Dict[str, TensorType]:
|
|
"""Stats function for PPO. Returns a dict with important KL and loss stats.
|
|
|
|
Args:
|
|
policy (Policy): The Policy to generate stats for.
|
|
train_batch (SampleBatch): The SampleBatch (already) used for training.
|
|
|
|
Returns:
|
|
Dict[str, TensorType]: The stats dict.
|
|
"""
|
|
return {
|
|
"cur_kl_coeff": policy.kl_coeff,
|
|
"cur_lr": policy.cur_lr,
|
|
"total_loss": policy._total_loss,
|
|
"policy_loss": policy._mean_policy_loss,
|
|
"vf_loss": policy._mean_vf_loss,
|
|
"vf_explained_var": policy._vf_explained_var,
|
|
"kl": policy._mean_kl,
|
|
"entropy": policy._mean_entropy,
|
|
"entropy_coeff": policy.entropy_coeff,
|
|
}
|
|
|
|
|
|
def vf_preds_fetches(
|
|
policy: Policy, input_dict: Dict[str, TensorType],
|
|
state_batches: List[TensorType], model: ModelV2,
|
|
action_dist: TorchDistributionWrapper) -> Dict[str, TensorType]:
|
|
"""Defines extra fetches per action computation.
|
|
|
|
Args:
|
|
policy (Policy): The Policy to perform the extra action fetch on.
|
|
input_dict (Dict[str, TensorType]): The input dict used for the action
|
|
computing forward pass.
|
|
state_batches (List[TensorType]): List of state tensors (empty for
|
|
non-RNNs).
|
|
model (ModelV2): The Model object of the Policy.
|
|
action_dist (TorchDistributionWrapper): The instantiated distribution
|
|
object, resulting from the model's outputs and the given
|
|
distribution class.
|
|
|
|
Returns:
|
|
Dict[str, TensorType]: Dict with extra tf fetches to perform per
|
|
action computation.
|
|
"""
|
|
# Return value function outputs. VF estimates will hence be added to the
|
|
# SampleBatches produced by the sampler(s) to generate the train batches
|
|
# going into the loss function.
|
|
return {
|
|
SampleBatch.VF_PREDS: model.value_function(),
|
|
}
|
|
|
|
|
|
class KLCoeffMixin:
|
|
"""Assigns the `update_kl()` method to the PPOPolicy.
|
|
|
|
This is used in PPO's execution plan (see ppo.py) for updating the KL
|
|
coefficient after each learning step based on `config.kl_target` and
|
|
the measured KL value (from the train_batch).
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
# The current KL value (as python float).
|
|
self.kl_coeff = config["kl_coeff"]
|
|
# Constant target value.
|
|
self.kl_target = config["kl_target"]
|
|
|
|
def update_kl(self, sampled_kl):
|
|
# Update the current KL value based on the recently measured value.
|
|
if sampled_kl > 2.0 * self.kl_target:
|
|
self.kl_coeff *= 1.5
|
|
elif sampled_kl < 0.5 * self.kl_target:
|
|
self.kl_coeff *= 0.5
|
|
# Return the current KL value.
|
|
return self.kl_coeff
|
|
|
|
|
|
class ValueNetworkMixin:
|
|
"""Assigns the `_value()` method to the PPOPolicy.
|
|
|
|
This way, Policy can call `_value()` to get the current VF estimate on a
|
|
single(!) observation (as done in `postprocess_trajectory_fn`).
|
|
Note: When doing this, an actual forward pass is being performed.
|
|
This is different from only calling `model.value_function()`, where
|
|
the result of the most recent forward pass is being used to return an
|
|
already calculated tensor.
|
|
"""
|
|
|
|
def __init__(self, obs_space, action_space, config):
|
|
# When doing GAE, we need the value function estimate on the
|
|
# observation.
|
|
if config["use_gae"]:
|
|
# Input dict is provided to us automatically via the Model's
|
|
# requirements. It's a single-timestep (last one in trajectory)
|
|
# input_dict.
|
|
|
|
def value(**input_dict):
|
|
input_dict = SampleBatch(input_dict)
|
|
input_dict = self._lazy_tensor_dict(input_dict)
|
|
model_out, _ = self.model(input_dict)
|
|
# [0] = remove the batch dim.
|
|
return self.model.value_function()[0].item()
|
|
|
|
# When not doing GAE, we do not require the value function's output.
|
|
else:
|
|
|
|
def value(*args, **kwargs):
|
|
return 0.0
|
|
|
|
self._value = value
|
|
|
|
|
|
def setup_mixins(policy: Policy, obs_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
config: TrainerConfigDict) -> None:
|
|
"""Call all mixin classes' constructors before PPOPolicy initialization.
|
|
|
|
Args:
|
|
policy (Policy): The Policy object.
|
|
obs_space (gym.spaces.Space): The Policy's observation space.
|
|
action_space (gym.spaces.Space): The Policy's action space.
|
|
config (TrainerConfigDict): The Policy's config.
|
|
"""
|
|
ValueNetworkMixin.__init__(policy, obs_space, action_space, config)
|
|
KLCoeffMixin.__init__(policy, config)
|
|
EntropyCoeffSchedule.__init__(policy, config["entropy_coeff"],
|
|
config["entropy_coeff_schedule"])
|
|
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
|
|
|
|
|
|
# Build a child class of `TorchPolicy`, given the custom functions defined
|
|
# above.
|
|
PPOTorchPolicy = build_policy_class(
|
|
name="PPOTorchPolicy",
|
|
framework="torch",
|
|
get_default_config=lambda: ray.rllib.agents.ppo.ppo.DEFAULT_CONFIG,
|
|
loss_fn=ppo_surrogate_loss,
|
|
stats_fn=kl_and_loss_stats,
|
|
extra_action_out_fn=vf_preds_fetches,
|
|
postprocess_fn=compute_gae_for_sample_batch,
|
|
extra_grad_process_fn=apply_grad_clipping,
|
|
before_init=setup_config,
|
|
before_loss_init=setup_mixins,
|
|
mixins=[
|
|
LearningRateSchedule, EntropyCoeffSchedule, KLCoeffMixin,
|
|
ValueNetworkMixin
|
|
],
|
|
)
|