mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
446 lines
15 KiB
Python
446 lines
15 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import gym
|
|
import numpy as np
|
|
import random
|
|
import time
|
|
import unittest
|
|
from collections import Counter
|
|
|
|
import ray
|
|
from ray.rllib.agents.pg import PGTrainer
|
|
from ray.rllib.agents.a3c import A2CTrainer
|
|
from ray.rllib.evaluation.rollout_worker import RolloutWorker
|
|
from ray.rllib.evaluation.metrics import collect_metrics
|
|
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.evaluation.postprocessing import compute_advantages
|
|
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID, SampleBatch
|
|
from ray.rllib.env.vector_env import VectorEnv
|
|
from ray.tune.registry import register_env
|
|
|
|
|
|
class MockPolicy(Policy):
|
|
def compute_actions(self,
|
|
obs_batch,
|
|
state_batches,
|
|
prev_action_batch=None,
|
|
prev_reward_batch=None,
|
|
episodes=None,
|
|
**kwargs):
|
|
return [random.choice([0, 1])] * len(obs_batch), [], {}
|
|
|
|
def postprocess_trajectory(self,
|
|
batch,
|
|
other_agent_batches=None,
|
|
episode=None):
|
|
assert episode is not None
|
|
return compute_advantages(batch, 100.0, 0.9, use_gae=False)
|
|
|
|
|
|
class BadPolicy(Policy):
|
|
def compute_actions(self,
|
|
obs_batch,
|
|
state_batches,
|
|
prev_action_batch=None,
|
|
prev_reward_batch=None,
|
|
episodes=None,
|
|
**kwargs):
|
|
raise Exception("intentional error")
|
|
|
|
def postprocess_trajectory(self,
|
|
batch,
|
|
other_agent_batches=None,
|
|
episode=None):
|
|
assert episode is not None
|
|
return compute_advantages(batch, 100.0, 0.9, use_gae=False)
|
|
|
|
|
|
class FailOnStepEnv(gym.Env):
|
|
def __init__(self):
|
|
self.observation_space = gym.spaces.Discrete(1)
|
|
self.action_space = gym.spaces.Discrete(2)
|
|
|
|
def reset(self):
|
|
raise ValueError("kaboom")
|
|
|
|
def step(self, action):
|
|
raise ValueError("kaboom")
|
|
|
|
|
|
class MockEnv(gym.Env):
|
|
def __init__(self, episode_length, config=None):
|
|
self.episode_length = episode_length
|
|
self.config = config
|
|
self.i = 0
|
|
self.observation_space = gym.spaces.Discrete(1)
|
|
self.action_space = gym.spaces.Discrete(2)
|
|
|
|
def reset(self):
|
|
self.i = 0
|
|
return self.i
|
|
|
|
def step(self, action):
|
|
self.i += 1
|
|
return 0, 1, self.i >= self.episode_length, {}
|
|
|
|
|
|
class MockEnv2(gym.Env):
|
|
def __init__(self, episode_length):
|
|
self.episode_length = episode_length
|
|
self.i = 0
|
|
self.observation_space = gym.spaces.Discrete(100)
|
|
self.action_space = gym.spaces.Discrete(2)
|
|
|
|
def reset(self):
|
|
self.i = 0
|
|
return self.i
|
|
|
|
def step(self, action):
|
|
self.i += 1
|
|
return self.i, 100, self.i >= self.episode_length, {}
|
|
|
|
|
|
class MockVectorEnv(VectorEnv):
|
|
def __init__(self, episode_length, num_envs):
|
|
self.envs = [MockEnv(episode_length) for _ in range(num_envs)]
|
|
self.observation_space = gym.spaces.Discrete(1)
|
|
self.action_space = gym.spaces.Discrete(2)
|
|
self.num_envs = num_envs
|
|
|
|
def vector_reset(self):
|
|
return [e.reset() for e in self.envs]
|
|
|
|
def reset_at(self, index):
|
|
return self.envs[index].reset()
|
|
|
|
def vector_step(self, actions):
|
|
obs_batch, rew_batch, done_batch, info_batch = [], [], [], []
|
|
for i in range(len(self.envs)):
|
|
obs, rew, done, info = self.envs[i].step(actions[i])
|
|
obs_batch.append(obs)
|
|
rew_batch.append(rew)
|
|
done_batch.append(done)
|
|
info_batch.append(info)
|
|
return obs_batch, rew_batch, done_batch, info_batch
|
|
|
|
def get_unwrapped(self):
|
|
return self.envs
|
|
|
|
|
|
class TestRolloutWorker(unittest.TestCase):
|
|
def testBasic(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: gym.make("CartPole-v0"), policy=MockPolicy)
|
|
batch = ev.sample()
|
|
for key in [
|
|
"obs", "actions", "rewards", "dones", "advantages",
|
|
"prev_rewards", "prev_actions"
|
|
]:
|
|
self.assertIn(key, batch)
|
|
self.assertGreater(np.abs(np.mean(batch[key])), 0)
|
|
|
|
def to_prev(vec):
|
|
out = np.zeros_like(vec)
|
|
for i, v in enumerate(vec):
|
|
if i + 1 < len(out) and not batch["dones"][i]:
|
|
out[i + 1] = v
|
|
return out.tolist()
|
|
|
|
self.assertEqual(batch["prev_rewards"].tolist(),
|
|
to_prev(batch["rewards"]))
|
|
self.assertEqual(batch["prev_actions"].tolist(),
|
|
to_prev(batch["actions"]))
|
|
self.assertGreater(batch["advantages"][0], 1)
|
|
|
|
def testBatchIds(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: gym.make("CartPole-v0"), policy=MockPolicy)
|
|
batch1 = ev.sample()
|
|
batch2 = ev.sample()
|
|
self.assertEqual(len(set(batch1["unroll_id"])), 1)
|
|
self.assertEqual(len(set(batch2["unroll_id"])), 1)
|
|
self.assertEqual(
|
|
len(set(SampleBatch.concat(batch1, batch2)["unroll_id"])), 2)
|
|
|
|
def testGlobalVarsUpdate(self):
|
|
agent = A2CTrainer(
|
|
env="CartPole-v0",
|
|
config={
|
|
"lr_schedule": [[0, 0.1], [400, 0.000001]],
|
|
})
|
|
result = agent.train()
|
|
self.assertGreater(result["info"]["learner"]["cur_lr"], 0.01)
|
|
result2 = agent.train()
|
|
self.assertLess(result2["info"]["learner"]["cur_lr"], 0.0001)
|
|
|
|
def testNoStepOnInit(self):
|
|
register_env("fail", lambda _: FailOnStepEnv())
|
|
pg = PGTrainer(env="fail", config={"num_workers": 1})
|
|
self.assertRaises(Exception, lambda: pg.train())
|
|
|
|
def testCallbacks(self):
|
|
counts = Counter()
|
|
pg = PGTrainer(
|
|
env="CartPole-v0", config={
|
|
"num_workers": 0,
|
|
"sample_batch_size": 50,
|
|
"train_batch_size": 50,
|
|
"callbacks": {
|
|
"on_episode_start": lambda x: counts.update({"start": 1}),
|
|
"on_episode_step": lambda x: counts.update({"step": 1}),
|
|
"on_episode_end": lambda x: counts.update({"end": 1}),
|
|
"on_sample_end": lambda x: counts.update({"sample": 1}),
|
|
},
|
|
})
|
|
pg.train()
|
|
pg.train()
|
|
pg.train()
|
|
pg.train()
|
|
self.assertEqual(counts["sample"], 4)
|
|
self.assertGreater(counts["start"], 0)
|
|
self.assertGreater(counts["end"], 0)
|
|
self.assertGreater(counts["step"], 200)
|
|
self.assertLess(counts["step"], 400)
|
|
|
|
def testQueryEvaluators(self):
|
|
register_env("test", lambda _: gym.make("CartPole-v0"))
|
|
pg = PGTrainer(
|
|
env="test",
|
|
config={
|
|
"num_workers": 2,
|
|
"sample_batch_size": 5,
|
|
"num_envs_per_worker": 2,
|
|
})
|
|
results = pg.workers.foreach_worker(lambda ev: ev.sample_batch_size)
|
|
results2 = pg.workers.foreach_worker_with_index(
|
|
lambda ev, i: (i, ev.sample_batch_size))
|
|
results3 = pg.workers.foreach_worker(
|
|
lambda ev: ev.foreach_env(lambda env: 1))
|
|
self.assertEqual(results, [10, 10, 10])
|
|
self.assertEqual(results2, [(0, 10), (1, 10), (2, 10)])
|
|
self.assertEqual(results3, [[1, 1], [1, 1], [1, 1]])
|
|
|
|
def testRewardClipping(self):
|
|
# clipping on
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv2(episode_length=10),
|
|
policy=MockPolicy,
|
|
clip_rewards=True,
|
|
batch_mode="complete_episodes")
|
|
self.assertEqual(max(ev.sample()["rewards"]), 1)
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episode_reward_mean"], 1000)
|
|
|
|
# clipping off
|
|
ev2 = RolloutWorker(
|
|
env_creator=lambda _: MockEnv2(episode_length=10),
|
|
policy=MockPolicy,
|
|
clip_rewards=False,
|
|
batch_mode="complete_episodes")
|
|
self.assertEqual(max(ev2.sample()["rewards"]), 100)
|
|
result2 = collect_metrics(ev2, [])
|
|
self.assertEqual(result2["episode_reward_mean"], 1000)
|
|
|
|
def testHardHorizon(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(episode_length=10),
|
|
policy=MockPolicy,
|
|
batch_mode="complete_episodes",
|
|
batch_steps=10,
|
|
episode_horizon=4,
|
|
soft_horizon=False)
|
|
samples = ev.sample()
|
|
# three logical episodes
|
|
self.assertEqual(len(set(samples["eps_id"])), 3)
|
|
# 3 done values
|
|
self.assertEqual(sum(samples["dones"]), 3)
|
|
|
|
def testSoftHorizon(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(episode_length=10),
|
|
policy=MockPolicy,
|
|
batch_mode="complete_episodes",
|
|
batch_steps=10,
|
|
episode_horizon=4,
|
|
soft_horizon=True)
|
|
samples = ev.sample()
|
|
# three logical episodes
|
|
self.assertEqual(len(set(samples["eps_id"])), 3)
|
|
# only 1 hard done value
|
|
self.assertEqual(sum(samples["dones"]), 1)
|
|
|
|
def testMetrics(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(episode_length=10),
|
|
policy=MockPolicy,
|
|
batch_mode="complete_episodes")
|
|
remote_ev = RolloutWorker.as_remote().remote(
|
|
env_creator=lambda _: MockEnv(episode_length=10),
|
|
policy=MockPolicy,
|
|
batch_mode="complete_episodes")
|
|
ev.sample()
|
|
ray.get(remote_ev.sample.remote())
|
|
result = collect_metrics(ev, [remote_ev])
|
|
self.assertEqual(result["episodes_this_iter"], 20)
|
|
self.assertEqual(result["episode_reward_mean"], 10)
|
|
|
|
def testAsync(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: gym.make("CartPole-v0"),
|
|
sample_async=True,
|
|
policy=MockPolicy)
|
|
batch = ev.sample()
|
|
for key in ["obs", "actions", "rewards", "dones", "advantages"]:
|
|
self.assertIn(key, batch)
|
|
self.assertGreater(batch["advantages"][0], 1)
|
|
|
|
def testAutoVectorization(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda cfg: MockEnv(episode_length=20, config=cfg),
|
|
policy=MockPolicy,
|
|
batch_mode="truncate_episodes",
|
|
batch_steps=2,
|
|
num_envs=8)
|
|
for _ in range(8):
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 16)
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episodes_this_iter"], 0)
|
|
for _ in range(8):
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 16)
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episodes_this_iter"], 8)
|
|
indices = []
|
|
for env in ev.async_env.vector_env.envs:
|
|
self.assertEqual(env.unwrapped.config.worker_index, 0)
|
|
indices.append(env.unwrapped.config.vector_index)
|
|
self.assertEqual(indices, [0, 1, 2, 3, 4, 5, 6, 7])
|
|
|
|
def testBatchesLargerWhenVectorized(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(episode_length=8),
|
|
policy=MockPolicy,
|
|
batch_mode="truncate_episodes",
|
|
batch_steps=4,
|
|
num_envs=4)
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 16)
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episodes_this_iter"], 0)
|
|
batch = ev.sample()
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episodes_this_iter"], 4)
|
|
|
|
def testVectorEnvSupport(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockVectorEnv(episode_length=20, num_envs=8),
|
|
policy=MockPolicy,
|
|
batch_mode="truncate_episodes",
|
|
batch_steps=10)
|
|
for _ in range(8):
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 10)
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episodes_this_iter"], 0)
|
|
for _ in range(8):
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 10)
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episodes_this_iter"], 8)
|
|
|
|
def testTruncateEpisodes(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(10),
|
|
policy=MockPolicy,
|
|
batch_steps=15,
|
|
batch_mode="truncate_episodes")
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 15)
|
|
|
|
def testCompleteEpisodes(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(10),
|
|
policy=MockPolicy,
|
|
batch_steps=5,
|
|
batch_mode="complete_episodes")
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 10)
|
|
|
|
def testCompleteEpisodesPacking(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(10),
|
|
policy=MockPolicy,
|
|
batch_steps=15,
|
|
batch_mode="complete_episodes")
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 20)
|
|
self.assertEqual(
|
|
batch["t"].tolist(),
|
|
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
|
|
|
|
def testFilterSync(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: gym.make("CartPole-v0"),
|
|
policy=MockPolicy,
|
|
sample_async=True,
|
|
observation_filter="ConcurrentMeanStdFilter")
|
|
time.sleep(2)
|
|
ev.sample()
|
|
filters = ev.get_filters(flush_after=True)
|
|
obs_f = filters[DEFAULT_POLICY_ID]
|
|
self.assertNotEqual(obs_f.rs.n, 0)
|
|
self.assertNotEqual(obs_f.buffer.n, 0)
|
|
|
|
def testGetFilters(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: gym.make("CartPole-v0"),
|
|
policy=MockPolicy,
|
|
sample_async=True,
|
|
observation_filter="ConcurrentMeanStdFilter")
|
|
self.sample_and_flush(ev)
|
|
filters = ev.get_filters(flush_after=False)
|
|
time.sleep(2)
|
|
filters2 = ev.get_filters(flush_after=False)
|
|
obs_f = filters[DEFAULT_POLICY_ID]
|
|
obs_f2 = filters2[DEFAULT_POLICY_ID]
|
|
self.assertGreaterEqual(obs_f2.rs.n, obs_f.rs.n)
|
|
self.assertGreaterEqual(obs_f2.buffer.n, obs_f.buffer.n)
|
|
|
|
def testSyncFilter(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: gym.make("CartPole-v0"),
|
|
policy=MockPolicy,
|
|
sample_async=True,
|
|
observation_filter="ConcurrentMeanStdFilter")
|
|
obs_f = self.sample_and_flush(ev)
|
|
|
|
# Current State
|
|
filters = ev.get_filters(flush_after=False)
|
|
obs_f = filters[DEFAULT_POLICY_ID]
|
|
|
|
self.assertLessEqual(obs_f.buffer.n, 20)
|
|
|
|
new_obsf = obs_f.copy()
|
|
new_obsf.rs._n = 100
|
|
ev.sync_filters({DEFAULT_POLICY_ID: new_obsf})
|
|
filters = ev.get_filters(flush_after=False)
|
|
obs_f = filters[DEFAULT_POLICY_ID]
|
|
self.assertGreaterEqual(obs_f.rs.n, 100)
|
|
self.assertLessEqual(obs_f.buffer.n, 20)
|
|
|
|
def sample_and_flush(self, ev):
|
|
time.sleep(2)
|
|
ev.sample()
|
|
filters = ev.get_filters(flush_after=True)
|
|
obs_f = filters[DEFAULT_POLICY_ID]
|
|
self.assertNotEqual(obs_f.rs.n, 0)
|
|
self.assertNotEqual(obs_f.buffer.n, 0)
|
|
return obs_f
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ray.init(num_cpus=5)
|
|
unittest.main(verbosity=2)
|