mirror of
https://github.com/vale981/ray
synced 2025-03-09 21:06:39 -04:00

Add new search algorithm (genetic) along with the base framework of the searcher (which performs some basic jobs such as logging, recording and organizing in our project). Note that this is the initial commit. In the following days, we will add example, UT, and other refinements.
343 lines
14 KiB
Bash
Executable file
343 lines
14 KiB
Bash
Executable file
#!/usr/bin/env bash
|
|
|
|
# Cause the script to exit if a single command fails.
|
|
set -e
|
|
|
|
# Show explicitly which commands are currently running.
|
|
set -x
|
|
|
|
ROOT_DIR=$(cd "$(dirname "${BASH_SOURCE:-$0}")"; pwd)
|
|
|
|
DOCKER_SHA=$($ROOT_DIR/../../build-docker.sh --output-sha --no-cache)
|
|
echo "Using Docker image" $DOCKER_SHA
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env PongDeterministic-v0 \
|
|
--run A3C \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env PongDeterministic-v0 \
|
|
--run A2C \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v1 \
|
|
--run PPO \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "lr": 1e-4, "sgd_minibatch_size": 64, "train_batch_size": 2000, "num_workers": 1, "model": {"free_log_std": true}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v1 \
|
|
--run PPO \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"simple_optimizer": false, "num_sgd_iter": 2, "model": {"use_lstm": true}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v1 \
|
|
--run PPO \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"simple_optimizer": true, "num_sgd_iter": 2, "model": {"use_lstm": true}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v1 \
|
|
--run PPO \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "lr": 1e-4, "sgd_minibatch_size": 64, "train_batch_size": 2000, "num_workers": 1, "use_gae": false}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env Pendulum-v0 \
|
|
--run ES \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"stepsize": 0.01, "episodes_per_batch": 20, "train_batch_size": 100, "num_workers": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env Pong-v0 \
|
|
--run ES \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"stepsize": 0.01, "episodes_per_batch": 20, "train_batch_size": 100, "num_workers": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run A3C \
|
|
--stop '{"training_iteration": 2}' \
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run DQN \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"lr": 1e-3, "schedule_max_timesteps": 100000, "exploration_fraction": 0.1, "exploration_final_eps": 0.02, "dueling": false, "hiddens": [], "model": {"fcnet_hiddens": [64], "fcnet_activation": "relu"}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run DQN \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run APEX \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2, "timesteps_per_iteration": 1000, "gpu": false, "min_iter_time_s": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env FrozenLake-v0 \
|
|
--run DQN \
|
|
--stop '{"training_iteration": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env FrozenLake-v0 \
|
|
--run PPO \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_sgd_iter": 10, "sgd_minibatch_size": 64, "train_batch_size": 1000, "num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env PongDeterministic-v4 \
|
|
--run DQN \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"lr": 1e-4, "schedule_max_timesteps": 2000000, "buffer_size": 10000, "exploration_fraction": 0.1, "exploration_final_eps": 0.01, "sample_batch_size": 4, "learning_starts": 10000, "target_network_update_freq": 1000, "gamma": 0.99, "prioritized_replay": true}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env MontezumaRevenge-v0 \
|
|
--run PPO \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "lr": 1e-4, "sgd_minibatch_size": 64, "train_batch_size": 2000, "num_workers": 1, "model": {"dim": 40, "conv_filters": [[16, [8, 8], 4], [32, [4, 4], 2], [512, [5, 5], 1]]}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v1 \
|
|
--run A3C \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2, "model": {"use_lstm": true}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run DQN \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run PG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"sample_batch_size": 500, "num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run PG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"sample_batch_size": 500, "num_workers": 1, "model": {"use_lstm": true, "max_seq_len": 100}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run PG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"sample_batch_size": 500, "num_workers": 1, "num_envs_per_worker": 10}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env Pong-v0 \
|
|
--run PG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"sample_batch_size": 500, "num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env FrozenLake-v0 \
|
|
--run PG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"sample_batch_size": 500, "num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env Pendulum-v0 \
|
|
--run DDPG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run IMPALA \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"gpu": false, "num_workers": 2, "min_iter_time_s": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run IMPALA \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"gpu": false, "num_workers": 2, "min_iter_time_s": 1, "model": {"use_lstm": true}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env MountainCarContinuous-v0 \
|
|
--run DDPG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
rllib train \
|
|
--env MountainCarContinuous-v0 \
|
|
--run DDPG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env Pendulum-v0 \
|
|
--run APEX_DDPG \
|
|
--ray-num-cpus 8 \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2, "optimizer": {"num_replay_buffer_shards": 1}, "learning_starts": 100, "min_iter_time_s": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
sh /ray/test/jenkins_tests/multi_node_tests/test_rllib_eval.sh
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/test/test_local.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/test/test_checkpoint_restore.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/test/test_policy_evaluator.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/test/test_serving_env.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/test/test_lstm.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/test/test_multi_agent_env.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/test/test_supported_spaces.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/tune_mnist_ray.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/pbt_example.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/hyperband_example.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/async_hyperband_example.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/tune_mnist_ray_hyperband.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/tune_mnist_async_hyperband.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/hyperopt_example.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/tune_mnist_keras.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/mnist_pytorch.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/mnist_pytorch_trainable.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/genetic_example.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/examples/legacy_multiagent/multiagent_mountaincar.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/examples/legacy_multiagent/multiagent_pendulum.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/examples/multiagent_cartpole.py --num-iters=2
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/examples/multiagent_two_trainers.py --num-iters=2
|
|
|
|
# No Xray for PyTorch
|
|
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env PongDeterministic-v4 \
|
|
--run A3C \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2, "use_pytorch": true, "model": {"use_lstm": false, "grayscale": true, "zero_mean": false, "dim": 84, "channel_major": true}, "preprocessor_pref": "rllib"}'
|
|
|
|
# No Xray for PyTorch
|
|
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v1 \
|
|
--run A3C \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2, "use_pytorch": true}'
|
|
|
|
python3 $ROOT_DIR/multi_node_docker_test.py \
|
|
--docker-image=$DOCKER_SHA \
|
|
--num-nodes=5 \
|
|
--num-redis-shards=10 \
|
|
--use-raylet \
|
|
--test-script=/ray/test/jenkins_tests/multi_node_tests/test_0.py
|
|
|
|
python3 $ROOT_DIR/multi_node_docker_test.py \
|
|
--docker-image=$DOCKER_SHA \
|
|
--num-nodes=5 \
|
|
--num-redis-shards=5 \
|
|
--num-gpus=0,1,2,3,4 \
|
|
--num-drivers=7 \
|
|
--driver-locations=0,1,0,1,2,3,4 \
|
|
--test-script=/ray/test/jenkins_tests/multi_node_tests/remove_driver_test.py
|
|
|
|
python3 $ROOT_DIR/multi_node_docker_test.py \
|
|
--docker-image=$DOCKER_SHA \
|
|
--num-nodes=5 \
|
|
--num-redis-shards=2 \
|
|
--num-gpus=0,0,5,6,50 \
|
|
--num-drivers=100 \
|
|
--use-raylet \
|
|
--test-script=/ray/test/jenkins_tests/multi_node_tests/many_drivers_test.py
|
|
|
|
python3 $ROOT_DIR/multi_node_docker_test.py \
|
|
--docker-image=$DOCKER_SHA \
|
|
--num-nodes=1 \
|
|
--mem-size=60G \
|
|
--shm-size=60G \
|
|
--use-raylet \
|
|
--test-script=/ray/test/jenkins_tests/multi_node_tests/large_memory_test.py
|