mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
![]() The DDPG/TD3 algorithms currently do not have a PyTorch implementation. This PR adds PyTorch support for DDPG/TD3 to RLlib. This PR: - Depends on the re-factor PR for DDPG (Functional Algorithm API). - Adds learning regression tests for the PyTorch version of DDPG and a DDPG (torch) - Updates the documentation to reflect that DDPG and TD3 now support PyTorch. * Learning Pendulum-v0 on torch version (same config as tf). Wall time a little slower (~20% than tf). * Fix GPU target model problem. |
||
---|---|---|
.. | ||
common | ||
tests | ||
__init__.py | ||
apex.py | ||
distributional_q_tf_model.py | ||
dqn.py | ||
dqn_tf_policy.py | ||
dqn_torch_model.py | ||
dqn_torch_policy.py | ||
README.md | ||
simple_q.py | ||
simple_q_model.py | ||
simple_q_tf_policy.py | ||
simple_q_torch_policy.py |
Code in this package is adapted from https://github.com/openai/baselines/tree/master/baselines/deepq.