ray/rllib/tuned_examples/ddpg/mountaincarcontinuous-ddpg.yaml

59 lines
1.5 KiB
YAML

# This configuration can expect to reach 90 reward in 10k-20k timesteps
mountaincarcontinuous-ddpg:
env: MountainCarContinuous-v0
run: DDPG
stop:
episode_reward_mean: 90
time_total_s: 600 # 10 minutes
config:
# Works for both torch and tf.
framework: tf
# === Model ===
actor_hiddens: [32, 64]
critic_hiddens: [64, 64]
n_step: 3
model: {}
gamma: 0.99
env_config: {}
# === Exploration ===
exploration_config:
initial_scale: 1.0
final_scale: 0.02
scale_timesteps: 40000
ou_base_scale: 0.75
ou_theta: 0.15
ou_sigma: 0.2
timesteps_per_iteration: 1000
target_network_update_freq: 0
tau: 0.01
# === Replay buffer ===
buffer_size: 50000
prioritized_replay: False
prioritized_replay_alpha: 0.6
prioritized_replay_beta: 0.4
prioritized_replay_eps: 0.000001
clip_rewards: False
# === Optimization ===
actor_lr: 0.001
critic_lr: 0.001
use_huber: False
huber_threshold: 1.0
l2_reg: 0.00001
learning_starts: 1000
rollout_fragment_length: 1
train_batch_size: 64
# === Parallelism ===
num_workers: 0
num_gpus_per_worker: 0
per_worker_exploration: False
worker_side_prioritization: False
# === Evaluation ===
evaluation_interval: 5
evaluation_num_episodes: 10