ray/doc/source/ray-air/examples/xgboost_starter.py
2022-08-16 14:01:25 -07:00

87 lines
2.4 KiB
Python

# flake8: noqa
# isort: skip_file
# __air_generic_preprocess_start__
import ray
# Load data.
dataset = ray.data.read_csv("s3://anonymous@air-example-data/breast_cancer.csv")
# Split data into train and validation.
train_dataset, valid_dataset = dataset.train_test_split(test_size=0.3)
# Create a test dataset by dropping the target column.
test_dataset = valid_dataset.drop_columns(cols=["target"])
# __air_generic_preprocess_end__
# __air_xgb_preprocess_start__
# Create a preprocessor to scale some columns.
from ray.data.preprocessors import StandardScaler
preprocessor = StandardScaler(columns=["mean radius", "mean texture"])
# __air_xgb_preprocess_end__
# __air_xgb_train_start__
from ray.air.config import ScalingConfig
from ray.train.xgboost import XGBoostTrainer
trainer = XGBoostTrainer(
scaling_config=ScalingConfig(
# Number of workers to use for data parallelism.
num_workers=2,
# Whether to use GPU acceleration.
use_gpu=False,
),
label_column="target",
num_boost_round=20,
params={
# XGBoost specific params
"objective": "binary:logistic",
# "tree_method": "gpu_hist", # uncomment this to use GPUs.
"eval_metric": ["logloss", "error"],
},
datasets={"train": train_dataset, "valid": valid_dataset},
preprocessor=preprocessor,
)
result = trainer.fit()
print(result.metrics)
# __air_xgb_train_end__
# __air_xgb_tuner_start__
from ray import tune
param_space = {"params": {"max_depth": tune.randint(1, 9)}}
metric = "train-logloss"
# __air_xgb_tuner_end__
# __air_tune_generic_end__
from ray.tune.tuner import Tuner, TuneConfig
tuner = Tuner(
trainer,
param_space=param_space,
tune_config=TuneConfig(num_samples=5, metric=metric, mode="min"),
)
result_grid = tuner.fit()
best_result = result_grid.get_best_result()
print("Best result:", best_result)
# __air_tune_generic_end__
# __air_xgb_batchpred_start__
from ray.train.batch_predictor import BatchPredictor
from ray.train.xgboost import XGBoostPredictor
# You can also create a checkpoint from a trained model using
# `XGBoostCheckpoint.from_model`.
checkpoint = best_result.checkpoint
batch_predictor = BatchPredictor.from_checkpoint(checkpoint, XGBoostPredictor)
predicted_probabilities = batch_predictor.predict(test_dataset)
predicted_probabilities.show()
# {'predictions': 0.9970690608024597}
# {'predictions': 0.9943051934242249}
# {'predictions': 0.00334902573376894}
# ...
# __air_xgb_batchpred_end__