mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
314 lines
11 KiB
Python
314 lines
11 KiB
Python
import logging
|
|
from typing import Type
|
|
|
|
from ray.rllib.agents import with_common_config
|
|
from ray.rllib.agents.callbacks import DefaultCallbacks
|
|
from ray.rllib.agents.trainer import Trainer
|
|
from ray.rllib.evaluation.worker_set import WorkerSet
|
|
from ray.rllib.execution.replay_ops import (
|
|
SimpleReplayBuffer,
|
|
Replay,
|
|
StoreToReplayBuffer,
|
|
WaitUntilTimestepsElapsed,
|
|
)
|
|
from ray.rllib.execution.rollout_ops import (
|
|
ParallelRollouts,
|
|
ConcatBatches,
|
|
synchronous_parallel_sample,
|
|
)
|
|
from ray.rllib.execution.concurrency_ops import Concurrently
|
|
from ray.rllib.execution.train_ops import (
|
|
multi_gpu_train_one_step,
|
|
train_one_step,
|
|
TrainOneStep,
|
|
)
|
|
from ray.rllib.execution.metric_ops import StandardMetricsReporting
|
|
from ray.rllib.models.catalog import ModelCatalog
|
|
from ray.rllib.models.modelv2 import restore_original_dimensions
|
|
from ray.rllib.models.torch.torch_action_dist import TorchCategorical
|
|
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.deprecation import DEPRECATED_VALUE
|
|
from ray.rllib.utils.framework import try_import_torch
|
|
from ray.rllib.utils.metrics import (
|
|
NUM_AGENT_STEPS_SAMPLED,
|
|
NUM_ENV_STEPS_SAMPLED,
|
|
SYNCH_WORKER_WEIGHTS_TIMER,
|
|
)
|
|
from ray.rllib.utils.replay_buffers.utils import validate_buffer_config
|
|
from ray.rllib.utils.typing import ResultDict, TrainerConfigDict
|
|
from ray.util.iter import LocalIterator
|
|
|
|
from ray.rllib.algorithms.alpha_zero.alpha_zero_policy import AlphaZeroPolicy
|
|
from ray.rllib.algorithms.alpha_zero.mcts import MCTS
|
|
from ray.rllib.algorithms.alpha_zero.ranked_rewards import get_r2_env_wrapper
|
|
|
|
torch, nn = try_import_torch()
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class AlphaZeroDefaultCallbacks(DefaultCallbacks):
|
|
"""AlphaZero callbacks.
|
|
|
|
If you use custom callbacks, you must extend this class and call super()
|
|
for on_episode_start.
|
|
"""
|
|
|
|
def on_episode_start(self, worker, base_env, policies, episode, **kwargs):
|
|
# save env state when an episode starts
|
|
env = base_env.get_sub_environments()[0]
|
|
state = env.get_state()
|
|
episode.user_data["initial_state"] = state
|
|
|
|
|
|
# fmt: off
|
|
# __sphinx_doc_begin__
|
|
DEFAULT_CONFIG = with_common_config({
|
|
# Size of batches collected from each worker
|
|
"rollout_fragment_length": 200,
|
|
# Number of timesteps collected for each SGD round
|
|
"train_batch_size": 4000,
|
|
# Total SGD batch size across all devices for SGD
|
|
"sgd_minibatch_size": 128,
|
|
# Whether to shuffle sequences in the batch when training (recommended)
|
|
"shuffle_sequences": True,
|
|
# Number of SGD iterations in each outer loop
|
|
"num_sgd_iter": 30,
|
|
# In case a buffer optimizer is used
|
|
"learning_starts": 1000,
|
|
# Size of the replay buffer in batches (not timesteps!).
|
|
"buffer_size": DEPRECATED_VALUE,
|
|
"replay_buffer_config": {
|
|
"_enable_replay_buffer_api": True,
|
|
"type": "SimpleReplayBuffer",
|
|
# Size of the replay buffer in batches (not timesteps!).
|
|
"capacity": 1000,
|
|
# When to start returning samples (in batches, not timesteps!).
|
|
"learning_starts": 500,
|
|
},
|
|
# Stepsize of SGD
|
|
"lr": 5e-5,
|
|
# Learning rate schedule
|
|
"lr_schedule": None,
|
|
# Share layers for value function. If you set this to True, it"s important
|
|
# to tune vf_loss_coeff.
|
|
"vf_share_layers": False,
|
|
# Whether to rollout "complete_episodes" or "truncate_episodes"
|
|
"batch_mode": "complete_episodes",
|
|
# Which observation filter to apply to the observation
|
|
"observation_filter": "NoFilter",
|
|
|
|
# === MCTS ===
|
|
"mcts_config": {
|
|
"puct_coefficient": 1.0,
|
|
"num_simulations": 30,
|
|
"temperature": 1.5,
|
|
"dirichlet_epsilon": 0.25,
|
|
"dirichlet_noise": 0.03,
|
|
"argmax_tree_policy": False,
|
|
"add_dirichlet_noise": True,
|
|
},
|
|
|
|
# === Ranked Rewards ===
|
|
# implement the ranked reward (r2) algorithm
|
|
# from: https://arxiv.org/pdf/1807.01672.pdf
|
|
"ranked_rewards": {
|
|
"enable": True,
|
|
"percentile": 75,
|
|
"buffer_max_length": 1000,
|
|
# add rewards obtained from random policy to
|
|
# "warm start" the buffer
|
|
"initialize_buffer": True,
|
|
"num_init_rewards": 100,
|
|
},
|
|
|
|
# === Evaluation ===
|
|
# Extra configuration that disables exploration.
|
|
"evaluation_config": {
|
|
"mcts_config": {
|
|
"argmax_tree_policy": True,
|
|
"add_dirichlet_noise": False,
|
|
},
|
|
},
|
|
|
|
# === Callbacks ===
|
|
"callbacks": AlphaZeroDefaultCallbacks,
|
|
|
|
"framework": "torch", # Only PyTorch supported so far.
|
|
})
|
|
# __sphinx_doc_end__
|
|
# fmt: on
|
|
|
|
|
|
def alpha_zero_loss(policy, model, dist_class, train_batch):
|
|
# get inputs unflattened inputs
|
|
input_dict = restore_original_dimensions(
|
|
train_batch["obs"], policy.observation_space, "torch"
|
|
)
|
|
# forward pass in model
|
|
model_out = model.forward(input_dict, None, [1])
|
|
logits, _ = model_out
|
|
values = model.value_function()
|
|
logits, values = torch.squeeze(logits), torch.squeeze(values)
|
|
priors = nn.Softmax(dim=-1)(logits)
|
|
# compute actor and critic losses
|
|
policy_loss = torch.mean(
|
|
-torch.sum(train_batch["mcts_policies"] * torch.log(priors), dim=-1)
|
|
)
|
|
value_loss = torch.mean(torch.pow(values - train_batch["value_label"], 2))
|
|
# compute total loss
|
|
total_loss = (policy_loss + value_loss) / 2
|
|
return total_loss, policy_loss, value_loss
|
|
|
|
|
|
class AlphaZeroPolicyWrapperClass(AlphaZeroPolicy):
|
|
def __init__(self, obs_space, action_space, config):
|
|
model = ModelCatalog.get_model_v2(
|
|
obs_space, action_space, action_space.n, config["model"], "torch"
|
|
)
|
|
_, env_creator = Trainer._get_env_id_and_creator(config["env"], config)
|
|
if config["ranked_rewards"]["enable"]:
|
|
# if r2 is enabled, tne env is wrapped to include a rewards buffer
|
|
# used to normalize rewards
|
|
env_cls = get_r2_env_wrapper(env_creator, config["ranked_rewards"])
|
|
|
|
# the wrapped env is used only in the mcts, not in the
|
|
# rollout workers
|
|
def _env_creator():
|
|
return env_cls(config["env_config"])
|
|
|
|
else:
|
|
|
|
def _env_creator():
|
|
return env_creator(config["env_config"])
|
|
|
|
def mcts_creator():
|
|
return MCTS(model, config["mcts_config"])
|
|
|
|
super().__init__(
|
|
obs_space,
|
|
action_space,
|
|
config,
|
|
model,
|
|
alpha_zero_loss,
|
|
TorchCategorical,
|
|
mcts_creator,
|
|
_env_creator,
|
|
)
|
|
|
|
|
|
class AlphaZeroTrainer(Trainer):
|
|
@classmethod
|
|
@override(Trainer)
|
|
def get_default_config(cls) -> TrainerConfigDict:
|
|
return DEFAULT_CONFIG
|
|
|
|
def validate_config(self, config: TrainerConfigDict) -> None:
|
|
"""Checks and updates the config based on settings."""
|
|
# Call super's validation method.
|
|
super().validate_config(config)
|
|
validate_buffer_config(config)
|
|
|
|
@override(Trainer)
|
|
def get_default_policy_class(self, config: TrainerConfigDict) -> Type[Policy]:
|
|
return AlphaZeroPolicyWrapperClass
|
|
|
|
@override(Trainer)
|
|
def training_iteration(self) -> ResultDict:
|
|
"""TODO:
|
|
|
|
Returns:
|
|
The results dict from executing the training iteration.
|
|
"""
|
|
|
|
# Sample n MultiAgentBatches from n workers.
|
|
new_sample_batches = synchronous_parallel_sample(
|
|
worker_set=self.workers, concat=False
|
|
)
|
|
|
|
for batch in new_sample_batches:
|
|
# Update sampling step counters.
|
|
self._counters[NUM_ENV_STEPS_SAMPLED] += batch.env_steps()
|
|
self._counters[NUM_AGENT_STEPS_SAMPLED] += batch.agent_steps()
|
|
# Store new samples in the replay buffer
|
|
# Use deprecated add_batch() to support old replay buffers for now
|
|
if self.local_replay_buffer is not None:
|
|
self.local_replay_buffer.add(batch)
|
|
|
|
if self.local_replay_buffer is not None:
|
|
train_batch = self.local_replay_buffer.sample(
|
|
self.config["train_batch_size"]
|
|
)
|
|
else:
|
|
train_batch = SampleBatch.concat_samples(new_sample_batches)
|
|
|
|
# Learn on the training batch.
|
|
# Use simple optimizer (only for multi-agent or tf-eager; all other
|
|
# cases should use the multi-GPU optimizer, even if only using 1 GPU)
|
|
train_results = {}
|
|
if train_batch is not None:
|
|
if self.config.get("simple_optimizer") is True:
|
|
train_results = train_one_step(self, train_batch)
|
|
else:
|
|
train_results = multi_gpu_train_one_step(self, train_batch)
|
|
|
|
# TODO: Move training steps counter update outside of `train_one_step()` method.
|
|
# # Update train step counters.
|
|
# self._counters[NUM_ENV_STEPS_TRAINED] += train_batch.env_steps()
|
|
# self._counters[NUM_AGENT_STEPS_TRAINED] += train_batch.agent_steps()
|
|
|
|
# Update weights and global_vars - after learning on the local worker - on all
|
|
# remote workers.
|
|
global_vars = {
|
|
"timestep": self._counters[NUM_ENV_STEPS_SAMPLED],
|
|
}
|
|
with self._timers[SYNCH_WORKER_WEIGHTS_TIMER]:
|
|
self.workers.sync_weights(global_vars=global_vars)
|
|
|
|
# Return all collected metrics for the iteration.
|
|
return train_results
|
|
|
|
@staticmethod
|
|
@override(Trainer)
|
|
def execution_plan(
|
|
workers: WorkerSet, config: TrainerConfigDict, **kwargs
|
|
) -> LocalIterator[dict]:
|
|
assert (
|
|
len(kwargs) == 0
|
|
), "Alpha zero execution_plan does NOT take any additional parameters"
|
|
|
|
rollouts = ParallelRollouts(workers, mode="bulk_sync")
|
|
|
|
if config["simple_optimizer"]:
|
|
train_op = rollouts.combine(
|
|
ConcatBatches(
|
|
min_batch_size=config["train_batch_size"],
|
|
count_steps_by=config["multiagent"]["count_steps_by"],
|
|
)
|
|
).for_each(TrainOneStep(workers, num_sgd_iter=config["num_sgd_iter"]))
|
|
else:
|
|
replay_buffer = SimpleReplayBuffer(config["buffer_size"])
|
|
|
|
store_op = rollouts.for_each(
|
|
StoreToReplayBuffer(local_buffer=replay_buffer)
|
|
)
|
|
|
|
replay_op = (
|
|
Replay(local_buffer=replay_buffer)
|
|
.filter(WaitUntilTimestepsElapsed(config["learning_starts"]))
|
|
.combine(
|
|
ConcatBatches(
|
|
min_batch_size=config["train_batch_size"],
|
|
count_steps_by=config["multiagent"]["count_steps_by"],
|
|
)
|
|
)
|
|
.for_each(TrainOneStep(workers, num_sgd_iter=config["num_sgd_iter"]))
|
|
)
|
|
|
|
train_op = Concurrently(
|
|
[store_op, replay_op], mode="round_robin", output_indexes=[1]
|
|
)
|
|
|
|
return StandardMetricsReporting(train_op, workers, config)
|