ray/rllib/tests/test_execution.py

256 lines
7.9 KiB
Python

import numpy as np
import time
import gym
import queue
import ray
from ray.rllib.agents.ppo.ppo_tf_policy import PPOTFPolicy
from ray.rllib.evaluation.worker_set import WorkerSet
from ray.rllib.evaluation.rollout_worker import RolloutWorker
from ray.rllib.execution.concurrency_ops import Concurrently, Enqueue, Dequeue
from ray.rllib.execution.metric_ops import StandardMetricsReporting
from ray.rllib.execution.replay_ops import StoreToReplayBuffer, Replay
from ray.rllib.execution.rollout_ops import ParallelRollouts, AsyncGradients, \
ConcatBatches, StandardizeFields
from ray.rllib.execution.train_ops import TrainOneStep, ComputeGradients, \
AverageGradients
from ray.rllib.execution.replay_buffer import LocalReplayBuffer, \
ReplayActor
from ray.rllib.policy.sample_batch import SampleBatch
from ray.util.iter import LocalIterator, from_range
from ray.util.iter_metrics import SharedMetrics
def iter_list(values):
return LocalIterator(lambda _: values, SharedMetrics())
def make_workers(n):
local = RolloutWorker(
env_creator=lambda _: gym.make("CartPole-v0"),
policy_spec=PPOTFPolicy,
rollout_fragment_length=100)
remotes = [
RolloutWorker.as_remote().remote(
env_creator=lambda _: gym.make("CartPole-v0"),
policy_spec=PPOTFPolicy,
rollout_fragment_length=100) for _ in range(n)
]
workers = WorkerSet._from_existing(local, remotes)
return workers
def test_concurrently(ray_start_regular_shared):
a = iter_list([1, 2, 3])
b = iter_list([4, 5, 6])
c = Concurrently([a, b], mode="round_robin")
assert c.take(6) == [1, 4, 2, 5, 3, 6]
a = iter_list([1, 2, 3])
b = iter_list([4, 5, 6])
c = Concurrently([a, b], mode="async")
assert c.take(6) == [1, 4, 2, 5, 3, 6]
def test_concurrently_weighted(ray_start_regular_shared):
a = iter_list([1, 1, 1])
b = iter_list([2, 2, 2])
c = iter_list([3, 3, 3])
c = Concurrently(
[a, b, c], mode="round_robin", round_robin_weights=[3, 1, 2])
assert c.take(9) == [1, 1, 1, 2, 3, 3, 2, 3, 2]
a = iter_list([1, 1, 1])
b = iter_list([2, 2, 2])
c = iter_list([3, 3, 3])
c = Concurrently(
[a, b, c], mode="round_robin", round_robin_weights=[1, 1, "*"])
assert c.take(9) == [1, 2, 3, 3, 3, 1, 2, 1, 2]
def test_concurrently_output(ray_start_regular_shared):
a = iter_list([1, 2, 3])
b = iter_list([4, 5, 6])
c = Concurrently([a, b], mode="round_robin", output_indexes=[1])
assert c.take(6) == [4, 5, 6]
a = iter_list([1, 2, 3])
b = iter_list([4, 5, 6])
c = Concurrently([a, b], mode="round_robin", output_indexes=[0, 1])
assert c.take(6) == [1, 4, 2, 5, 3, 6]
def test_enqueue_dequeue(ray_start_regular_shared):
a = iter_list([1, 2, 3])
q = queue.Queue(100)
a.for_each(Enqueue(q)).take(3)
assert q.qsize() == 3
assert q.get_nowait() == 1
assert q.get_nowait() == 2
assert q.get_nowait() == 3
q.put("a")
q.put("b")
q.put("c")
a = Dequeue(q)
assert a.take(3) == ["a", "b", "c"]
def test_metrics(ray_start_regular_shared):
workers = make_workers(1)
workers.foreach_worker(lambda w: w.sample())
a = from_range(10, repeat=True).gather_sync()
b = StandardMetricsReporting(
a, workers, {
"min_iter_time_s": 2.5,
"timesteps_per_iteration": 0,
"metrics_smoothing_episodes": 10,
"collect_metrics_timeout": 10,
})
start = time.time()
res1 = next(b)
assert res1["episode_reward_mean"] > 0, res1
res2 = next(b)
assert res2["episode_reward_mean"] > 0, res2
assert time.time() - start > 2.4
workers.stop()
def test_rollouts(ray_start_regular_shared):
workers = make_workers(2)
a = ParallelRollouts(workers, mode="bulk_sync")
assert next(a).count == 200
counters = a.shared_metrics.get().counters
assert counters["num_steps_sampled"] == 200, counters
a = ParallelRollouts(workers, mode="async")
assert next(a).count == 100
counters = a.shared_metrics.get().counters
assert counters["num_steps_sampled"] == 100, counters
workers.stop()
def test_rollouts_local(ray_start_regular_shared):
workers = make_workers(0)
a = ParallelRollouts(workers, mode="bulk_sync")
assert next(a).count == 100
counters = a.shared_metrics.get().counters
assert counters["num_steps_sampled"] == 100, counters
workers.stop()
def test_concat_batches(ray_start_regular_shared):
workers = make_workers(0)
a = ParallelRollouts(workers, mode="async")
b = a.combine(ConcatBatches(1000))
assert next(b).count == 1000
timers = b.shared_metrics.get().timers
assert "sample" in timers
def test_standardize(ray_start_regular_shared):
workers = make_workers(0)
a = ParallelRollouts(workers, mode="async")
b = a.for_each(StandardizeFields(["t"]))
batch = next(b)
assert abs(np.mean(batch["t"])) < 0.001, batch
assert abs(np.std(batch["t"]) - 1.0) < 0.001, batch
def test_async_grads(ray_start_regular_shared):
workers = make_workers(2)
a = AsyncGradients(workers)
res1 = next(a)
assert isinstance(res1, tuple) and len(res1) == 2, res1
counters = a.shared_metrics.get().counters
assert counters["num_steps_sampled"] == 100, counters
workers.stop()
def test_train_one_step(ray_start_regular_shared):
workers = make_workers(0)
a = ParallelRollouts(workers, mode="bulk_sync")
b = a.for_each(TrainOneStep(workers))
batch, stats = next(b)
assert isinstance(batch, SampleBatch)
assert "default_policy" in stats
assert "learner_stats" in stats["default_policy"]
counters = a.shared_metrics.get().counters
assert counters["num_steps_sampled"] == 100, counters
assert counters["num_steps_trained"] == 100, counters
timers = a.shared_metrics.get().timers
assert "learn" in timers
workers.stop()
def test_compute_gradients(ray_start_regular_shared):
workers = make_workers(0)
a = ParallelRollouts(workers, mode="bulk_sync")
b = a.for_each(ComputeGradients(workers))
grads, counts = next(b)
assert counts == 100, counts
timers = a.shared_metrics.get().timers
assert "compute_grads" in timers
def test_avg_gradients(ray_start_regular_shared):
workers = make_workers(0)
a = ParallelRollouts(workers, mode="bulk_sync")
b = a.for_each(ComputeGradients(workers)).batch(4)
c = b.for_each(AverageGradients())
grads, counts = next(c)
assert counts == 400, counts
def test_store_to_replay_local(ray_start_regular_shared):
buf = LocalReplayBuffer(
num_shards=1,
learning_starts=200,
buffer_size=1000,
replay_batch_size=100,
prioritized_replay_alpha=0.6,
prioritized_replay_beta=0.4,
prioritized_replay_eps=0.0001)
assert buf.replay() is None
workers = make_workers(0)
a = ParallelRollouts(workers, mode="bulk_sync")
b = a.for_each(StoreToReplayBuffer(local_buffer=buf))
next(b)
assert buf.replay() is None # learning hasn't started yet
next(b)
assert buf.replay().count == 100
replay_op = Replay(local_buffer=buf)
assert next(replay_op).count == 100
def test_store_to_replay_actor(ray_start_regular_shared):
actor = ReplayActor.remote(
num_shards=1,
learning_starts=200,
buffer_size=1000,
replay_batch_size=100,
prioritized_replay_alpha=0.6,
prioritized_replay_beta=0.4,
prioritized_replay_eps=0.0001)
assert ray.get(actor.replay.remote()) is None
workers = make_workers(0)
a = ParallelRollouts(workers, mode="bulk_sync")
b = a.for_each(StoreToReplayBuffer(actors=[actor]))
next(b)
assert ray.get(actor.replay.remote()) is None # learning hasn't started
next(b)
assert ray.get(actor.replay.remote()).count == 100
replay_op = Replay(actors=[actor])
assert next(replay_op).count == 100
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))