ray/rllib/examples/custom_logger.py

138 lines
4.2 KiB
Python

"""
This example script demonstrates how one can define a custom logger
object for any RLlib Trainer via the Trainer's config dict's
"logger_config" key.
By default (logger_config=None), RLlib will construct a tune
UnifiedLogger object, which logs JSON, CSV, and TBX output.
Below examples include:
- Disable logging entirely.
- Using only one of tune's Json, CSV, or TBX loggers.
- Defining a custom logger (by sub-classing tune.logger.py::Logger).
"""
import argparse
import os
from ray.rllib.utils.test_utils import check_learning_achieved
from ray.tune.logger import Logger
parser = argparse.ArgumentParser()
parser.add_argument(
"--run",
type=str,
default="PPO",
help="The RLlib-registered algorithm to use.")
parser.add_argument("--num-cpus", type=int, default=0)
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.")
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.")
parser.add_argument(
"--stop-iters",
type=int,
default=200,
help="Number of iterations to train.")
parser.add_argument(
"--stop-timesteps",
type=int,
default=100000,
help="Number of timesteps to train.")
parser.add_argument(
"--stop-reward",
type=float,
default=150.0,
help="Reward at which we stop training.")
class MyPrintLogger(Logger):
"""Logs results by simply printing out everything.
"""
def _init(self):
# Custom init function.
print("Initializing ...")
# Setting up our log-line prefix.
self.prefix = self.config.get("logger_config").get("prefix")
def on_result(self, result: dict):
# Define, what should happen on receiving a `result` (dict).
print(f"{self.prefix}: {result}")
def close(self):
# Releases all resources used by this logger.
print("Closing")
def flush(self):
# Flushing all possible disk writes to permanent storage.
print("Flushing ;)", flush=True)
if __name__ == "__main__":
import ray
from ray import tune
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None)
config = {
"env": "CartPole-v0"
if args.run not in ["DDPG", "TD3"] else "Pendulum-v0",
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"framework": args.framework,
# Run with tracing enabled for tfe/tf2.
"eager_tracing": args.framework in ["tfe", "tf2"],
# Setting up a custom logger config.
# ----------------------------------
# The following are different examples of custom logging setups:
# 1) Disable logging entirely.
# "logger_config": {
# # Use the tune.logger.NoopLogger class for no logging.
# "type": "ray.tune.logger.NoopLogger",
# },
# 2) Use tune's JsonLogger only.
# Alternatively, use `CSVLogger` or `TBXLogger` instead of
# `JsonLogger` in the "type" key below.
# "logger_config": {
# "type": "ray.tune.logger.JsonLogger",
# # Optional: Custom logdir (do not define this here
# # for using ~/ray_results/...).
# "logdir": "/tmp",
# },
# 3) Custom logger (see `MyPrintLogger` class above).
"logger_config": {
# Provide the class directly or via fully qualified class
# path.
"type": MyPrintLogger,
# `config` keys:
"prefix": "ABC",
# Optional: Custom logdir (do not define this here
# for using ~/ray_results/...).
# "logdir": "/somewhere/on/my/file/system/"
}
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
results = tune.run(
args.run, config=config, stop=stop, verbose=2, loggers=[MyPrintLogger])
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()