ray/rllib/examples/env/halfcheetah_rand_direc.py

63 lines
2.1 KiB
Python

import numpy as np
import gym
from gym.envs.mujoco.mujoco_env import MujocoEnv
from ray.rllib.env.apis.task_settable_env import TaskSettableEnv
class HalfCheetahRandDirecEnv(MujocoEnv, gym.utils.EzPickle, TaskSettableEnv):
"""HalfCheetah Environment with two diff tasks, moving forwards or backwards
Direction is defined as a scalar: +1.0 (forwards) or -1.0 (backwards)
"""
def __init__(self, goal_direction=None):
self.goal_direction = goal_direction if goal_direction else 1.0
MujocoEnv.__init__(self, "half_cheetah.xml", 5)
gym.utils.EzPickle.__init__(self, goal_direction)
def sample_tasks(self, n_tasks):
# For fwd/bwd env, goal direc is backwards if - 1.0, forwards if + 1.0
return np.random.choice((-1.0, 1.0), (n_tasks, ))
def set_task(self, task):
"""
Args:
task: task of the meta-learning environment
"""
self.goal_direction = task
def get_task(self):
"""
Returns:
task: task of the meta-learning environment
"""
return self.goal_direction
def step(self, action):
xposbefore = self.sim.data.qpos[0]
self.do_simulation(action, self.frame_skip)
xposafter = self.sim.data.qpos[0]
ob = self._get_obs()
reward_ctrl = -0.5 * 0.1 * np.square(action).sum()
reward_run = self.goal_direction * (xposafter - xposbefore) / self.dt
reward = reward_ctrl + reward_run
done = False
return ob, reward, done, dict(
reward_run=reward_run, reward_ctrl=reward_ctrl)
def _get_obs(self):
return np.concatenate([
self.sim.data.qpos.flat[1:],
self.sim.data.qvel.flat,
])
def reset_model(self):
qpos = self.init_qpos + self.np_random.uniform(
low=-.1, high=.1, size=self.model.nq)
qvel = self.init_qvel + self.np_random.randn(self.model.nv) * .1
self.set_state(qpos, qvel)
obs = self._get_obs()
return obs
def viewer_setup(self):
self.viewer.cam.distance = self.model.stat.extent * 0.5