mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00
180 lines
7.1 KiB
Python
180 lines
7.1 KiB
Python
from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple
|
|
import numpy as np
|
|
import tree # pip install dm_tree
|
|
|
|
# TODO (sven): add IMPALA-style option.
|
|
# from ray.rllib.examples.models.impala_vision_nets import TorchImpalaVisionNet
|
|
from ray.rllib.models.torch.misc import normc_initializer as \
|
|
torch_normc_initializer, SlimFC
|
|
from ray.rllib.models.catalog import ModelCatalog
|
|
from ray.rllib.models.modelv2 import ModelV2, restore_original_dimensions
|
|
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
|
|
from ray.rllib.models.utils import get_filter_config
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.framework import try_import_torch
|
|
from ray.rllib.utils.spaces.space_utils import flatten_space
|
|
from ray.rllib.utils.torch_ops import one_hot
|
|
|
|
torch, nn = try_import_torch()
|
|
|
|
|
|
class ComplexInputNetwork(TorchModelV2, nn.Module):
|
|
"""TorchModelV2 concat'ing CNN outputs to flat input(s), followed by FC(s).
|
|
|
|
Note: This model should be used for complex (Dict or Tuple) observation
|
|
spaces that have one or more image components.
|
|
|
|
The data flow is as follows:
|
|
|
|
`obs` (e.g. Tuple[img0, img1, discrete0]) -> `CNN0 + CNN1 + ONE-HOT`
|
|
`CNN0 + CNN1 + ONE-HOT` -> concat all flat outputs -> `out`
|
|
`out` -> (optional) FC-stack -> `out2`
|
|
`out2` -> action (logits) and vaulue heads.
|
|
"""
|
|
|
|
def __init__(self, obs_space, action_space, num_outputs, model_config,
|
|
name):
|
|
self.original_space = obs_space.original_space if \
|
|
hasattr(obs_space, "original_space") else obs_space
|
|
assert isinstance(self.original_space, (Dict, Tuple)), \
|
|
"`obs_space.original_space` must be [Dict|Tuple]!"
|
|
|
|
self.processed_obs_space = self.original_space if \
|
|
model_config.get("_disable_preprocessor_api") else obs_space
|
|
|
|
nn.Module.__init__(self)
|
|
TorchModelV2.__init__(self, self.original_space, action_space,
|
|
num_outputs, model_config, name)
|
|
|
|
self.flattened_input_space = flatten_space(self.original_space)
|
|
|
|
# Atari type CNNs or IMPALA type CNNs (with residual layers)?
|
|
# self.cnn_type = self.model_config["custom_model_config"].get(
|
|
# "conv_type", "atari")
|
|
|
|
# Build the CNN(s) given obs_space's image components.
|
|
self.cnns = {}
|
|
self.one_hot = {}
|
|
self.flatten = {}
|
|
concat_size = 0
|
|
for i, component in enumerate(self.flattened_input_space):
|
|
# Image space.
|
|
if len(component.shape) == 3:
|
|
config = {
|
|
"conv_filters": model_config["conv_filters"]
|
|
if "conv_filters" in model_config else
|
|
get_filter_config(obs_space.shape),
|
|
"conv_activation": model_config.get("conv_activation"),
|
|
"post_fcnet_hiddens": [],
|
|
}
|
|
# if self.cnn_type == "atari":
|
|
cnn = ModelCatalog.get_model_v2(
|
|
component,
|
|
action_space,
|
|
num_outputs=None,
|
|
model_config=config,
|
|
framework="torch",
|
|
name="cnn_{}".format(i))
|
|
# TODO (sven): add IMPALA-style option.
|
|
# else:
|
|
# cnn = TorchImpalaVisionNet(
|
|
# component,
|
|
# action_space,
|
|
# num_outputs=None,
|
|
# model_config=config,
|
|
# name="cnn_{}".format(i))
|
|
|
|
concat_size += cnn.num_outputs
|
|
self.cnns[i] = cnn
|
|
self.add_module("cnn_{}".format(i), cnn)
|
|
# Discrete|MultiDiscrete inputs -> One-hot encode.
|
|
elif isinstance(component, Discrete):
|
|
self.one_hot[i] = True
|
|
concat_size += component.n
|
|
elif isinstance(component, MultiDiscrete):
|
|
self.one_hot[i] = True
|
|
concat_size += sum(component.nvec)
|
|
# Everything else (1D Box).
|
|
else:
|
|
self.flatten[i] = int(np.product(component.shape))
|
|
concat_size += self.flatten[i]
|
|
|
|
# Optional post-concat FC-stack.
|
|
post_fc_stack_config = {
|
|
"fcnet_hiddens": model_config.get("post_fcnet_hiddens", []),
|
|
"fcnet_activation": model_config.get("post_fcnet_activation",
|
|
"relu")
|
|
}
|
|
self.post_fc_stack = ModelCatalog.get_model_v2(
|
|
Box(float("-inf"),
|
|
float("inf"),
|
|
shape=(concat_size, ),
|
|
dtype=np.float32),
|
|
self.action_space,
|
|
None,
|
|
post_fc_stack_config,
|
|
framework="torch",
|
|
name="post_fc_stack")
|
|
|
|
# Actions and value heads.
|
|
self.logits_layer = None
|
|
self.value_layer = None
|
|
self._value_out = None
|
|
|
|
if num_outputs:
|
|
# Action-distribution head.
|
|
self.logits_layer = SlimFC(
|
|
in_size=self.post_fc_stack.num_outputs,
|
|
out_size=num_outputs,
|
|
activation_fn=None,
|
|
)
|
|
# Create the value branch model.
|
|
self.value_layer = SlimFC(
|
|
in_size=self.post_fc_stack.num_outputs,
|
|
out_size=1,
|
|
activation_fn=None,
|
|
initializer=torch_normc_initializer(0.01))
|
|
else:
|
|
self.num_outputs = concat_size
|
|
|
|
@override(ModelV2)
|
|
def forward(self, input_dict, state, seq_lens):
|
|
if SampleBatch.OBS in input_dict and "obs_flat" in input_dict:
|
|
orig_obs = input_dict[SampleBatch.OBS]
|
|
else:
|
|
orig_obs = restore_original_dimensions(
|
|
input_dict[SampleBatch.OBS],
|
|
self.processed_obs_space,
|
|
tensorlib="torch")
|
|
# Push image observations through our CNNs.
|
|
outs = []
|
|
for i, component in enumerate(tree.flatten(orig_obs)):
|
|
if i in self.cnns:
|
|
cnn_out, _ = self.cnns[i]({SampleBatch.OBS: component})
|
|
outs.append(cnn_out)
|
|
elif i in self.one_hot:
|
|
if component.dtype in [torch.int32, torch.int64, torch.uint8]:
|
|
outs.append(
|
|
one_hot(component, self.flattened_input_space[i]))
|
|
else:
|
|
outs.append(component)
|
|
else:
|
|
outs.append(torch.reshape(component, [-1, self.flatten[i]]))
|
|
# Concat all outputs and the non-image inputs.
|
|
out = torch.cat(outs, dim=1)
|
|
# Push through (optional) FC-stack (this may be an empty stack).
|
|
out, _ = self.post_fc_stack({SampleBatch.OBS: out}, [], None)
|
|
|
|
# No logits/value branches.
|
|
if self.logits_layer is None:
|
|
return out, []
|
|
|
|
# Logits- and value branches.
|
|
logits, values = self.logits_layer(out), self.value_layer(out)
|
|
self._value_out = torch.reshape(values, [-1])
|
|
return logits, []
|
|
|
|
@override(ModelV2)
|
|
def value_function(self):
|
|
return self._value_out
|