mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
286 lines
11 KiB
Python
286 lines
11 KiB
Python
import logging
|
|
import numpy as np
|
|
from typing import Optional, Type
|
|
|
|
from ray.rllib.algorithms.cql.cql_tf_policy import CQLTFPolicy
|
|
from ray.rllib.algorithms.cql.cql_torch_policy import CQLTorchPolicy
|
|
from ray.rllib.algorithms.sac.sac import (
|
|
SACTrainer,
|
|
SACConfig,
|
|
)
|
|
from ray.rllib.execution.train_ops import (
|
|
multi_gpu_train_one_step,
|
|
train_one_step,
|
|
)
|
|
from ray.rllib.utils.replay_buffers.utils import sample_min_n_steps_from_buffer
|
|
from ray.rllib.offline.shuffled_input import ShuffledInput
|
|
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.deprecation import (
|
|
DEPRECATED_VALUE,
|
|
deprecation_warning,
|
|
Deprecated,
|
|
)
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_tfp
|
|
from ray.rllib.utils.metrics import (
|
|
LAST_TARGET_UPDATE_TS,
|
|
NUM_AGENT_STEPS_TRAINED,
|
|
NUM_ENV_STEPS_TRAINED,
|
|
NUM_TARGET_UPDATES,
|
|
TARGET_NET_UPDATE_TIMER,
|
|
SYNCH_WORKER_WEIGHTS_TIMER,
|
|
)
|
|
from ray.rllib.utils.replay_buffers.utils import update_priorities_in_replay_buffer
|
|
from ray.rllib.utils.typing import ResultDict, TrainerConfigDict
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
tfp = try_import_tfp()
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class CQLConfig(SACConfig):
|
|
"""Defines a configuration class from which a CQLTrainer can be built.
|
|
|
|
Example:
|
|
>>> config = CQLConfig().training(gamma=0.9, lr=0.01)\
|
|
... .resources(num_gpus=0)\
|
|
... .rollouts(num_rollout_workers=4)
|
|
>>> print(config.to_dict())
|
|
>>> # Build a Trainer object from the config and run 1 training iteration.
|
|
>>> trainer = config.build(env="CartPole-v1")
|
|
>>> trainer.train()
|
|
"""
|
|
|
|
def __init__(self, trainer_class=None):
|
|
super().__init__(trainer_class=trainer_class or CQLTrainer)
|
|
|
|
# fmt: off
|
|
# __sphinx_doc_begin__
|
|
# CQL-specific config settings:
|
|
self.bc_iters = 20000
|
|
self.temperature = 1.0
|
|
self.num_actions = 10
|
|
self.lagrangian = False
|
|
self.lagrangian_thresh = 5.0
|
|
self.min_q_weight = 5.0
|
|
|
|
# Changes to Trainer's/SACConfig's default:
|
|
# .offline_data()
|
|
self.input_evaluation = []
|
|
|
|
# .reporting()
|
|
self.min_sample_timesteps_per_reporting = 0
|
|
self.min_train_timesteps_per_reporting = 100
|
|
# fmt: on
|
|
# __sphinx_doc_end__
|
|
|
|
self.timesteps_per_iteration = DEPRECATED_VALUE
|
|
|
|
def training(
|
|
self,
|
|
*,
|
|
bc_iters: Optional[int] = None,
|
|
temperature: Optional[float] = None,
|
|
num_actions: Optional[int] = None,
|
|
lagrangian: Optional[bool] = None,
|
|
lagrangian_thresh: Optional[float] = None,
|
|
min_q_weight: Optional[float] = None,
|
|
**kwargs,
|
|
) -> "CQLConfig":
|
|
"""Sets the training-related configuration.
|
|
|
|
Args:
|
|
bc_iters: Number of iterations with Behavior Cloning pretraining.
|
|
temperature: CQL loss temperature.
|
|
num_actions: Number of actions to sample for CQL loss
|
|
lagrangian: Whether to use the Lagrangian for Alpha Prime (in CQL loss).
|
|
lagrangian_thresh: Lagrangian threshold.
|
|
min_q_weight: in Q weight multiplier.
|
|
|
|
Returns:
|
|
This updated TrainerConfig object.
|
|
"""
|
|
# Pass kwargs onto super's `training()` method.
|
|
super().training(**kwargs)
|
|
|
|
if bc_iters is not None:
|
|
self.bc_iters = bc_iters
|
|
if temperature is not None:
|
|
self.temperature = temperature
|
|
if num_actions is not None:
|
|
self.num_actions = num_actions
|
|
if lagrangian is not None:
|
|
self.lagrangian = lagrangian
|
|
if lagrangian_thresh is not None:
|
|
self.lagrangian_thresh = lagrangian_thresh
|
|
if min_q_weight is not None:
|
|
self.min_q_weight = min_q_weight
|
|
|
|
return self
|
|
|
|
|
|
class CQLTrainer(SACTrainer):
|
|
"""CQL (derived from SAC)."""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
# Add the entire dataset to Replay Buffer (global variable)
|
|
reader = self.workers.local_worker().input_reader
|
|
|
|
# For d4rl, add the D4RLReaders' dataset to the buffer.
|
|
if isinstance(self.config["input"], str) and "d4rl" in self.config["input"]:
|
|
dataset = reader.dataset
|
|
self.local_replay_buffer.add(dataset)
|
|
# For a list of files, add each file's entire content to the buffer.
|
|
elif isinstance(reader, ShuffledInput):
|
|
num_batches = 0
|
|
total_timesteps = 0
|
|
for batch in reader.child.read_all_files():
|
|
num_batches += 1
|
|
total_timesteps += len(batch)
|
|
# Add NEXT_OBS if not available. This is slightly hacked
|
|
# as for the very last time step, we will use next-obs=zeros
|
|
# and therefore force-set DONE=True to avoid this missing
|
|
# next-obs to cause learning problems.
|
|
if SampleBatch.NEXT_OBS not in batch:
|
|
obs = batch[SampleBatch.OBS]
|
|
batch[SampleBatch.NEXT_OBS] = np.concatenate(
|
|
[obs[1:], np.zeros_like(obs[0:1])]
|
|
)
|
|
batch[SampleBatch.DONES][-1] = True
|
|
self.local_replay_buffer.add_batch(batch)
|
|
logger.info(
|
|
f"Loaded {num_batches} batches ({total_timesteps} ts) into the"
|
|
" replay buffer, which has capacity "
|
|
f"{self.local_replay_buffer.capacity}."
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
"Unknown offline input! config['input'] must either be list of"
|
|
" offline files (json) or a D4RL-specific InputReader "
|
|
"specifier (e.g. 'd4rl.hopper-medium-v0')."
|
|
)
|
|
|
|
@classmethod
|
|
@override(SACTrainer)
|
|
def get_default_config(cls) -> TrainerConfigDict:
|
|
return CQLConfig().to_dict()
|
|
|
|
@override(SACTrainer)
|
|
def validate_config(self, config: TrainerConfigDict) -> None:
|
|
# First check, whether old `timesteps_per_iteration` is used. If so
|
|
# convert right away as for CQL, we must measure in training timesteps,
|
|
# never sampling timesteps (CQL does not sample).
|
|
if config.get("timesteps_per_iteration", DEPRECATED_VALUE) != DEPRECATED_VALUE:
|
|
deprecation_warning(
|
|
old="timesteps_per_iteration",
|
|
new="min_train_timesteps_per_reporting",
|
|
error=False,
|
|
)
|
|
config["min_train_timesteps_per_reporting"] = config[
|
|
"timesteps_per_iteration"
|
|
]
|
|
config["timesteps_per_iteration"] = DEPRECATED_VALUE
|
|
|
|
# Call super's validation method.
|
|
super().validate_config(config)
|
|
|
|
if config["num_gpus"] > 1:
|
|
raise ValueError("`num_gpus` > 1 not yet supported for CQL!")
|
|
|
|
# CQL-torch performs the optimizer steps inside the loss function.
|
|
# Using the multi-GPU optimizer will therefore not work (see multi-GPU
|
|
# check above) and we must use the simple optimizer for now.
|
|
if config["simple_optimizer"] is not True and config["framework"] == "torch":
|
|
config["simple_optimizer"] = True
|
|
|
|
if config["framework"] in ["tf", "tf2", "tfe"] and tfp is None:
|
|
logger.warning(
|
|
"You need `tensorflow_probability` in order to run CQL! "
|
|
"Install it via `pip install tensorflow_probability`. Your "
|
|
f"tf.__version__={tf.__version__ if tf else None}."
|
|
"Trying to import tfp results in the following error:"
|
|
)
|
|
try_import_tfp(error=True)
|
|
|
|
@override(SACTrainer)
|
|
def get_default_policy_class(self, config: TrainerConfigDict) -> Type[Policy]:
|
|
if config["framework"] == "torch":
|
|
return CQLTorchPolicy
|
|
else:
|
|
return CQLTFPolicy
|
|
|
|
@override(SACTrainer)
|
|
def training_iteration(self) -> ResultDict:
|
|
|
|
# Sample training batch from replay buffer.
|
|
train_batch = sample_min_n_steps_from_buffer(
|
|
self.local_replay_buffer,
|
|
self.config["train_batch_size"],
|
|
count_by_agent_steps=self._by_agent_steps,
|
|
)
|
|
|
|
# Old-style replay buffers return None if learning has not started
|
|
if not train_batch:
|
|
return {}
|
|
|
|
# Postprocess batch before we learn on it.
|
|
post_fn = self.config.get("before_learn_on_batch") or (lambda b, *a: b)
|
|
train_batch = post_fn(train_batch, self.workers, self.config)
|
|
|
|
# Learn on training batch.
|
|
# Use simple optimizer (only for multi-agent or tf-eager; all other
|
|
# cases should use the multi-GPU optimizer, even if only using 1 GPU)
|
|
if self.config.get("simple_optimizer") is True:
|
|
train_results = train_one_step(self, train_batch)
|
|
else:
|
|
train_results = multi_gpu_train_one_step(self, train_batch)
|
|
|
|
# Update replay buffer priorities.
|
|
update_priorities_in_replay_buffer(
|
|
self.local_replay_buffer,
|
|
self.config,
|
|
train_batch,
|
|
train_results,
|
|
)
|
|
|
|
# Update target network every `target_network_update_freq` training steps.
|
|
cur_ts = self._counters[
|
|
NUM_AGENT_STEPS_TRAINED if self._by_agent_steps else NUM_ENV_STEPS_TRAINED
|
|
]
|
|
last_update = self._counters[LAST_TARGET_UPDATE_TS]
|
|
if cur_ts - last_update >= self.config["target_network_update_freq"]:
|
|
with self._timers[TARGET_NET_UPDATE_TIMER]:
|
|
to_update = self.workers.local_worker().get_policies_to_train()
|
|
self.workers.local_worker().foreach_policy_to_train(
|
|
lambda p, pid: pid in to_update and p.update_target()
|
|
)
|
|
self._counters[NUM_TARGET_UPDATES] += 1
|
|
self._counters[LAST_TARGET_UPDATE_TS] = cur_ts
|
|
|
|
# Update remote workers's weights after learning on local worker
|
|
if self.workers.remote_workers():
|
|
with self._timers[SYNCH_WORKER_WEIGHTS_TIMER]:
|
|
self.workers.sync_weights()
|
|
|
|
# Return all collected metrics for the iteration.
|
|
return train_results
|
|
|
|
|
|
class _deprecated_default_config(dict):
|
|
def __init__(self):
|
|
super().__init__(CQLConfig().to_dict())
|
|
|
|
@Deprecated(
|
|
old="ray.rllib.algorithms.cql.cql.DEFAULT_CONFIG",
|
|
new="ray.rllib.algorithms.cql.cql.CQLConfig(...)",
|
|
error=False,
|
|
)
|
|
def __getitem__(self, item):
|
|
return super().__getitem__(item)
|
|
|
|
|
|
DEFAULT_CONFIG = _deprecated_default_config()
|
|
CQL_DEFAULT_CONFIG = DEFAULT_CONFIG
|